TECHNICAL REPORT 1950

PART III-GEODETIC WORK

PUBLISHED BY ORDER OF

THE SURVEYOR GENERAL OF INDLA

frinted at ter offion of the arodetio a thantho otbolis gubvey of nidu, defra dôf, midia, 1951.

Price Four Rupees, or Six Shillings (Copyright reserved)

CONTENTS

Page
IntroductionChapter I
Triangulation and Base Measurement
Para

1. General]
2. Reconnaissance 1
3. Narrative of the Observation Party 2
4. Mánäba Base-line 3
5. Description of Terminal Stations 3
6. System of Base Meesurement 4
7. Results of Base Measurements 5
8. Laplace Observations 5
9. Triangulation Observations 6
10. Heights 9
11. Connection with Triangulation by Marine Survey 10
12. Triangulation in the Andamans 10
Chapter II
Levelling
13. General 12
14. Summary of out-turn 13
15. Balesore to Howrah 13
16. Kārwār to Hubli 18
17. Raipur to Vizagapatam 23
18. River Crossing Detachment 28
19. Calcutta Mint to King George's Dock and to Cossipore 29
20. Howrah to Purbasthali 31
21. Kosi Levelling 35
22. Gandak Levelling 38
23. Height of Standard Benoh-mark at Purnea 41
24. Narbada Levelling 43
25. Height Control for Bargi Dam Projeot 45
26. Kandla Levelling 46
27. Levelling in Navi Wat and Navlakhi Areas 49
28. Progress of New Level Net 51

Chapter III
 Gravity

Para Page
29. Summary 63
30. Value of g at Palam Airport 63
31. Reduction and interpretation of gravity anomalies in the Nägpur area 64
32. Magnetic anomalies 64
Chapter IV
Deviation of the Vertical
33. General 76
34. Narrative of the Season's Work 76
35. Personal Equation 76
36. Details of the Laplace Stations 76
37. Geoid in Kutch 77
38. Hayford Deflections 78
39. Future Geoidal Programme 78
Chapter V
Tides
40. Tidal Observations 82
41. Harmonic Analysis 83
42. Tide-Tables 84
43. Córrections to Predictions 84
44. Accuraoy of Predictions 85
45. Prediction Methods 85
46. Miscellaneous 87
Chapter VIObservatories
47. Standards of Length 102
48. Coefficients of Expansion of 24-metre Invar Wires 105
49. Lengths of Wires 108
50. Magnetic Observations 107
51. Qbeervations at Repeat Stations 109
52. Meteorological and Seismological Observations 100
53. The Riefler Clock 109
54. Test, Calibration and Repairs of Instruments 109
55, Miscellaneous 110

Chapter Vil

Computations and Publications

Para Page
56. Adjustment of Topographical Triangulation in India 116
57. Triangulation data in Irāq and Irān 116
58. Computations of results of field work 117
59. Technical Papers 117
60. Other Publications 119
List of Important Geodetic Publications and Con- tributions by Officers of the Survey of India 121
Charts and Plate
Chart I Primary and Secondary Triangulation Series and Azimuth Stations 1
II Kandla Series 1949-50 2
III Hydrographic Triangulation of Kandla and Approaches 10
IV Lines of Precise Levelling and Tidal Sta- tions 12
V Levelling from Burdwān to Vizianagram 14
VI Changes in Heights of Bench-marks from Burdwãn to Balasore 14
VII Old and New Levellings from Kärwār to Hubli 18
VIII Kosi Levelling 35
IX Gandak Levelling 38
X Old and New. Levelling from Bagaha to Purnea 41
XI Secondary Levelling in Upper Narbeda Division 44
XII Pendulum Stations 63
XIII Gravity Anomalies (Hayford), contours showing $g-\gamma_{0 \mathbf{H}}$ 64
XIV Gravity Anomalies (Hayford), contours showing $g-\gamma \sigma$ 64
XV Modified Bouguer Anomalies $g-\gamma_{\mathrm{B}}$ 64
XVI Hayford Anomalies $g-\gamma \sigma$ 64
XVII Modified Bouguer ($g-\gamma_{\mathrm{B}}$) Anomaly, Sec- tion on AB 64
XVIII Magnetic Anomalies (Vertical Force) 65
XIX Magnetic Anomalies (Vertical Force), Sec- tion on AB 65
XX Latitude Stations 76
XXI Longitude Stations 78

XXIII The Compensated Geoid in India \& ${ }^{\varepsilon}$

Neighbouring Countries 78
XXIV Geoidal Sections 78
Plate XXV Length of 24-metre Comparator, 1949 .. 106
Chart XXVI Stations observed with Q.H.Ms. .. 108

INTRODUCTION

This report gives a detailed account of the activities of the Geodetic and Training Circle (formerly known as the Geodetic and Research Branch) during the period lst April 1949 to 31st March 1950. The following is a brief review of the contents.
2. Triangulation and Base Measurement.-(Chapter I). To provide planimetric control for the large scale surveys for the development of the Port of Kandla, a new geodetic base 54 miles long, has been measured, about 60 miles to the north east of Kandla. The old secondary triangulation has been re-observed for about 100 miles and Laplace observations for controlling the error in azimuth have been made.

The hydrographic triangulation in the Kandla creek carried out by the Marine Survey of India has been extended inland and connected to the new geodetic triangulation.

It is hoped to establish a now astronomical datum, measure a geodetic base and execute a series of geodetic triangulation in the Andaman Island next year. Precision traverses and levelling will also be carried out to provide framework data for the air survey of the Car Nicobars.
3. Levelling.-(Chapter II). During the period under report good progress has been made with levelling. Out of the nine levelling detachments which were sent to the field, three carried out 654 miles of levelling of high precision in one direction and 27 miles in both directions, one 114 miles of levelling of precision in both directions and five 1,240 miles of secondary levelling.

The high precision levelling has been carried out to test the stability of some bench-marks in Calcutta area and also to make new additions to the High Precision Levelling net of India.

The precision levelling was undertaken for the River Surveyor to the Commissioners for the port of Calcutta to provide height datums for his tide-gauges. A special detachment carried levelling across un-bridged rivers at seven places by the vertical angle and double terget methods.

The secondary levelling has been mainly done for various Irrigation projects in Madhya Pradesh and Bihār and for the development project for the port of Kandla.
4. Gravity.-(Chapter III). A preliminary discussion of gravity and magnetic observations in Madhya. Pradesh is given. The results on the whole seem to conform to the geology. It is hoped to continue the work in this area for another 2 or 3 years.
5. Deviation of the Vertical.-(Chapter IV). Observations were made with an astrolabe at four stations in Kutoh for providing

Laplace control for the new geodetic triangulation and these ha provided some useful information about the Geoid. Observation a. geoidal section from Dohad to Deesa, a longitudinal section Saurashtra and a line in Assam are on the programme for the af 2 or 3 years.
6. Magnetic Ohservations.-At the Oslo Assembly of t International Association of Terrestrial Magnetism and Electrici in 1948, a resolution was adopted to promote observations of da variation of the Horizontal Magnetic force in defferent parts of t world near the magnetic equator. In accordance with this Resol tion, some stations were selected in South India where spec observations were taken with three Q.H.Ms. The results are great interest and will be discussed at the forthcoming meeting the International Union of Geodesy and Geophysics in Bruss (1951).
7. Computing Office.-(Chapter VII). Main occupation of t Computing Office has been the computation of results of fir observations.

The task of systematic examination, compilation and adju ment of the huge mass of topographical triangulation in Inc (about 31 $\frac{1}{2}$ lakhs of points) is a very gigantic one. Although start has been made in that direction, the progress is serious impeded due to lack of adequate staff.
8. Headquarters Routine.-(Chapter V and VI). The tid predictions, seismic and meteorological observations at Dehra Di have been continued as usual. With a view to over-hauling ti present methods of tidal predictions and analysis followed in ti department, an officer was deputed to undertake a course advanced studies at the Liverpool Observatory and Tidal Institul It is proposed to introduce modern improved methods in all of future analysis and prediction work to achieve better accuracy f our predictions.

B. L. GULATEE, m.a. (oantab. F.R.I.C.s., M.I.s. (indu
Director, Geodetic and Training Circ Survey of India, Dehra Du

PERSONNEL OF THE GEODETIC AND TRAINING CIRCLE
Director, Geodetic and Training Circle
Shil B. L. Gulateq, m.a. (Ohntab.), f.r.i.o.s., M.i.s. (midia).
Dy. Director, Geodetic and Training Circle Lr.-Col. J. S. Panntal, i.h.

OFFICE OF THE DLRECTOR, GEODETIC AND TRAINING CLRCLE Ministerial Service

assistant Head Aocountart

Bhri H. Chatterji, b.A., Head Clork (Offg.). Shri Belwant Singh (Ofg.) . 13 Clerks.

GEODETIC AND RESEARCH BRANCH
President, Geodetic and Research Branch
Shri B. L. Gulattie, m.a. (oantab.), p.b.i.o.s., m.i.s. (india).

COMPUTING AND TIDAL PARTY
(Records and Restarot)

Class I Service
Shri B.L. Gulatee, m. A. (Centab.), f.e.i.o.s. Shri O. P. Grover, m.A., Mathematical Adviser (since left the Dept.).

Geodesy Scholars
Shr P. D. Verma, m.so.
Shri P. P. Chatterjee, m.eo.

Observatoby Seftion Class II Servica

Shri U. D. Mamgain, p.eo., in oherge (Offg. Clese I Service).
Shri ©. Vaikuntansthan, M.A.
Class III Service
Division I (Gradi I)
Shri J. B. Mathur.
Shri J. C. Bhattaoharjee, b.a. (Hoss.).
Division I (Grade II)
Shri M. Khendurl.
Clase III Service
Diviaion II
6 Compaters.
2 Inatrament Meohanion.
1 Artifloer.
1 Driver.
Tipal Section
Class II Sorvice
Shri A. N. Ramanathan, m.a. (Ofg. Clans I Servioe), in oharge.

Trial Smotion-Concid.
Class III Service
Division I (Grade I)
Shri K. A. P. Mathur, B.so.
Shri A. K. Banerjee, в.so.
Shri P. N. Sanfal, B.A.
Shri Sunirmal Das, b.so. Division I (Grade II)
Shri Prem Narain.

> Class III Service
> Division II

15 Computers.
Computing Sedition
Clase II Service
Shri C. B. Madan, b.A. (Hows:), in oharge. Shri A. K. Bhatteoharjea, в.A. (Hows.).

Class III Servics
Division I (Gradi I)
Shri T. N. Sharms, b.A. (re-employed)
Shri Kulbir Kumar Sawhney, B. 4
Shri Ranjit Singh Sabharwal, w.a
Class III Servies
Division II
17 Computers.

Cehart Section
Class III Service
Division I (Grade I)
Shri S. K. Sahai, b.so.
Class III Service
Division Π
4 Draftemen.
No. 14 PARTY (GEOPHYSICAL)
Class I Service
Shri N. L. Gupta, o.e.
STATISTICAL BRANCH
Class II Service
Shri C. B. Medan, b.A. (Hons.), in oharge.
(a) Statistical Section

Class III Service Drvision II
2 Computers.
(b) Preservation and Matitenanof Sscrion
Class III Service
Division LI
1 Computer.
(0) Levelling Seftion Class II Service
Shri J. K. Donald, b.so. (Probationer).
Class III Servica
Division I (Gradi I)
Shri B. P. Rundev.
Shri S. A. Muthukrishnan, B.A.
Shri G. S. Tonk, b.A.
Shri C. L. Puri.
Shri V. D. Bhatt.
Shri S. K. Bose, в.so.
Shri R. K. Gopts, в.so.
Shri Avinash Chandra, b.so.
Shri S. N. Nandi, b.so.
Shri M. L. Sahder, b.A.
Shri T. K. Vishvanathan, M.A.
Shri J. Narasimbam, b,so.
(d) Libraby

Class III Service Division II
1 Librarian.
(e) Prdftina Offios

Clase III Service
Division I (Grade I)
Shri H. H. Williams.
Bhri K. P. Bhattacharjee.
Class III Service
Division II
39 Tredeanen,

WORKSHOP SECTION
Class II Service
Shri A. N. Ramanathan, m.a. (Offg. Class I Service), in charge.

Class III Service
Division II
3 Artificers.
1 Clerk.

STORES SECTION

Class II Service
Shri A. N. Ramanathan, m.A. (Ofg.
Clasa I Service), in oharge.
Class III Service
Division I (Grade I).
Shri I. M. Saklani, p.a. (Offg.).
Class III Service
Division II
2 Storekeepers.

ESTATE SECTION

Class II Service

Shri A. N. Ramenathan, m.4. (Offg. Cless I Service), in oharge.

DISPENSARY
Dr. Jitendra Sain, m:B., g.s., in oharge.
Class III Service
Division II
1 Compounder.

TRAINING BRANCH

No. 15 Party
Class I Serpice
Shri J. C. Roas, in charge.

Officers under instruction

Msjor C. M. Sehni, i.a., i.n.
Major D. N. Sharma, r.m.
Capt. J. P. G. King, в.bo.
Capt. B. S. N. Murthy, B.so.
Capt. I. N. Thukral, b.so.
2/Lt. K. L. Khosla, в.so., B.E.
2/Lt. Parthe Rout, i.so. (Eng.).
2/Lt. M. M. Datts, b.so., в.e.
Shri V. P. Sharme, f.a.
Shri K. Satye Narayans, w.A.
Sbri V. Rangan, m.a.
Shri J. C. Sikcra, в.A.
Sbri R. S. Chugh, y.4.
Shri K, Sukhram Singh, B.A. (Номs.),

Class II Service
Shri V. Krishnamurty, m.A., A.R.I.c.s., b.r.g.s. (Ofg. Class I Service).

Officers under instruction
Shri T. R. Viswanathen, b.A. (Hons.).
Shri A. C. Dey, m.sc.
Shri C. M. Sapru, e.a.
Shri Hari Singh, b.a.
Shri V. Balasubramanayan, m.A.
Shri Babu Ram Jain, b.A., B.t.
Bhri Arun Biswas, d.a.
Shri R. Sivarame Krishnen, p.A. (Hows,).
Shri Satyendra Narayan Mathur, m.A., LL.b.

Class III Service
Division I (Grade I)
Shri J. C. Sahgal, b.a.
Shri R. K. Lal.
Sbri Udai Singh.
Class III Service Division II
1 Driver.
Ministerial Service
5 Clerks.

Primary and Secondary Triangulation Series

No.	Namo of Serles	Season	$\pm m$	$\pm p$	Instra. ment	No.	Name of Series	Season	$\pm m$	$\pm p$	Inatict ment
	Primary Series		*	$f t$.	incher		Secondary Serles-Contd.			ft.	inches
$\begin{aligned} & 5 \\ & 6 \end{aligned}$	Calcutta Lomgitudinal	1864-80	0. 560	2.23	36 \& 24	10	Gurwand Meridonal	1840-47	1.165	2.57	
6	Great Aro Merdiona, Sectlon $24^{\circ}-30^{\circ}$	1835-86	0.708	4.28	36	$20 b$	North-East Longltudinal East of 80°		0.422	2.67	
7 a	Eombry Longtudnal,				96			1840-51	0.822	1.41	24
8	Great Arc Meridional,		0.782	2.13	24	21	Furitiong Merldonal.	1848-52	1.502	2.42	2484
	Section $18^{\circ}-24^{\circ}$	1837-41	0.567	1.26	36	$23 n$	Gurhagar, Meridional	1848-50	1.461	2.08	184
9	Great Arc Merldional, Section $8^{\circ}-18^{\circ}$	1866-74	0.300	1,80	24	26	Abu Merldional	1851-52	0.617	1.53	18.
118	South Konkan Coast	1866-67	0.302	0.77	24	27	North Pirasnath Merid-				
$20 a$	North-East Longltud	1850-51	0.302	1.05	24	28	Kanal ${ }_{\text {Livar Merldional }}$	$1861-52$ $1852-56$	0.805 0.090	2.10 2.01	24 18
22	nal West of 80°	1850-51	0.658	1.05	24	29	Gujarit Longltudinal.	1852-02	0.860	1.97	18
236	Gurhügarh Merldional			2.15		30	Kathiawar Longitudi-	1859	1.481	1.66	
24	between $281^{\circ}-324^{\circ} \ldots$	$1850-62$ $1848-88$	0.302	0.96	24	91	Sabarmatl $\quad \cdots$	1863-54	1.348	0.01	18
25	Karlchl Long					35	Cutch Const	1065-58	0.986	1.80	18
32	Great Indus	1849-65	0.558	1.88	38	36	Kashmir Princlpal	1855-00	0.894	2.48	14
33	Inhinin Mfertilonal	1853-63	0.927	1.24	${ }^{24}$	88					Vernler
34	Assain Lungltuilluai	1854-60	0.578	1.52	24	3	$\underset{\text { nal }}{\text { Sambalpur Longituci- }}$	1950-57	0.806	1.48	
37	Jogi-Tlla Meridional	1855-62	0.481	1.67	36 \& 24	30	(Cutch) Coant Lin	1860-80	0.975	1.44	Vernied
43	Bhlar Longltudlusi	1860-72	0.311	1.21	36 \& 24	40	Kathlawar Meridional	1858-59	0.930	0.87	
44	Erstern Frontler or							1858-59		0.87	18
	Sulliong Merldlonal . .	1860	0.409	1.24	24	41	Kathlewhr Merldional				
48	Mudris Merldlonal			1.74		42		1850	247	1.99	18
	Cinast	1800-48	0.420	1.28	36 \& 24		No. 3	1850-00	0.060	3. 36	18
4t	Mangalore Meridlonal	1883-73	0.440	1.14	24	47	Kathluwlar Moridional				
$52 a$	Burum Coast (Sea 108	1864-82	0.386	1.21	24	48	East Colcutta Langi-	1803	1.164	.	18
83	Jubbulpore Meridlonal	1884-67	0.340	1.04	96		tudinal	1893-80	0.379	0.06	$2+$
58	Mulirus Longltudinal	1885-73	0.384	1.29	24	50	Kumaun aud Garhwaj ${ }^{\text {a }}$	1464-65	1.742	1.81	14 d if
58	Braluntaputria Merld. ional	1868-74	0.604	1.02							Vernle
58	bjunspur Merldional	1849-73	0.302	0.98	36 \& 24	61	NAsIk	186+-65	2.033	0.78	1480
82	Jodlypur Meridion	1873-70				$52 b$	Burina ('osest $141^{\circ}-10^{\circ}$	1870-77	0.327	1.69	$2+$
83	South-East Coast	1874-80	0.622	1.93	24						
84	Rastorn SInd Merld										
	lonal	1876-81	$0.24 t$	1.25	24	57	Colubatore No. 1	1800-71	1.547	2.50	14
66	Mandalay, Meridlona	1880-05	0.418	1.46	12	60	Cudilapah	1871-72	0.826	1.32	10
68	Manipur Lousltuillnal	1894-89	0.453	1.45	12	${ }_{61} 0$	Hyderabad	1871-72	1.405	0.78	24 \& 7
		1895-07	0.285	0.02	12	01	Majabar Coant	1872-80	1.632	1. 17	14 \& 19
72	Great Salween (See 105)	1900-11	0.404	4.28	12	85	Slam Branch	1478-41	3.711	2.58	12
74	Kalat Longltudlnal ..	1904-04	0. 304	3.15	12	67	Stong Hast	1801-03	1.054	2.71	14, 12
76	North Baluchlatan	1000-10	0.221	1.82	12						* 10
77	Gilgit	1000-11	0.443	2.62	12	70	Mnndalay Longltuilnal	1800-1640	1.008	1.00	8
80	Upper Irrawaddy ${ }^{\text {Senibalpur Mardalo }}$	1000-11	0.506 0.250	J. 14 1.28 2.	12	T	Manipur Morddlonal	1890-1002			
85	Sallibalpur Merldional Chittarong	1011-14	0.250 0.453	1.28	12			1015-1010 ${ }^{\text {d }}$ (1)	0.750	2.22	12
104	Mong Fisal	1020-il1	0.441	1.67	12×5	73	Kİmekinta		1. y 23	2.17	120 7
					WIld	75		1 ARS -09	1.348	2.117	
105	Oreat Solween	102u-31	U. 682	3.04	12\& 5 b	78	Klunsl Hilly	11000-13	2.0188	0.70	8
					Wild	81	idintla IIHIs	1010-11	0.0 .811	11.40	8
108	Burma Conal	1930-31	0.205	1.29	12	82	Shir	1011-12	0.794	2.47	8
107	nalbendin	1931-32	0.472	1.55	${ }_{5}{ }^{\text {a }}$ WHd	83	Ränchl	1411-12	1.1440	11.41	8
108	Aeram Lonultullinul	1934-36	0.428	1.034	5 Wld	84	VIllupuram	1911-12	1.184	0.10	8
109	Mandsaliny Mleridional	1930-37	0.452	2.900	s1 Wild	40	Indo Rusalan Cinmere-				
110	Kandis 4	1949-50	0.538	1.94	Geodtis Tavisionn	87	Khendwa	1912-13	2.780 0.610	2.17 1.71	8 8
	Secondury S					98	Ashta	1913-14	1.048	1.37	8
						89	Buldans	1013-14	0.304	0.88	
1	South Parasnlth Merli-					90	Naldrug	1913-14	1.465	1.81	8
	lonal	1836-34	8.709	9.98	18	01	Naga Hilla	1913-14	0.813	2.17	12
$\overline{7}$	Budhon Meridional	18335-4,	2. 242	7.47	18 \& 15	92	MIddie Goda var」	1814-15	0.913	0.72	8
3	Amuse Mardional	1831-38	1.847 1.843	4.71	18.18						
76	Rangir Merldonat ${ }^{\text {Bombay }}$ Langltudinai	1834-41	1.643	7.32	18.45	日3 H4	Kohlona	$1819-15$ $1914-15$	1.094	1.48	$12{ }_{12}{ }^{8}$
	Wett of 75°.	18:17-30	0.918	2.24	15	95	Bombay Island	1911-14			8
						9 9	Mudurit	1810-17	1.148	1.48	8
104	Sing Merldlons $21^{\circ}-25^{\circ}$	1860-62	0.723	1.18 1.39	18	97	Bsyalkot	1010-17	701	1.15	8
106	Singl Meridional $10^{\circ}-21^{\circ}$	1842-46	1.711	1.39	15						
11.	Boush Konten Const $15)^{\circ}-10^{\circ}$	1842-44	2.425	1.71	15	${ }_{100}^{00}$	Ranamen	$1925-27$ $1927-28$	1.246 2.096	3.80	$\frac{12}{W \mid 10}$
12	Karara Meridlonal : \because	184:35	1,507	3.46	18 \& 15	101	Peahtwar	1927-28	1.287	5. 516	
13	North Malnncha Merddlonal	1844-46	1.248	3.69	$18 \% \mathrm{is}$	102	North Wrairlsûn	1827-28	1.89\%	2.14	(W/Id
14	Cluendwir Mertilonal	1944-46	0.841	1.31	J6,		(1)	ror of mil	dubt	h	nta
					$24 \& 18$		angle (In eecon	1).			
15	Cors Merldilongl .	1845-47	0.073	9.09 1.32	15					Holed	helght
16	Caloutta Mertulonul Bouth Simaneha Merid.	1843-48	1.173	1.32	18		$\pm p=\begin{gathered}\text { ditlerence botween }\end{gathered}$	n two statlo	(In fe	et).	0
	conal	1845-59	1.608	1.48	24418						
18	EREapleura Merldional	1845-48	1.227	2.11	24815						

Chapter I

TRIANGULATION AND BASE MEASUREMENT

by B. L. Golated, m.a. (cantab.), f.r.i.d.s., m.I.s. (india)

1. General.-Chart I shows in blue the Primary and in green the Secondary Triangulation of India. The secondary triangulation is of much inferior quality to the primary. An idea of the relative precision of these two categories of triangulation is given by the value of the Ferero number ' m ' recorded in the table facing this Chart.

Due to the financial stringency and the shortage of personnel trained in precision base measurements and geodetio observations, it has not been possible to commence immediately a vigorous programme of systematic geodetic triangulation and primary traverse. Good progress is being made in imparting the necessary training to suitable personnel.

During the year under report an urgent requisition for large scale maps of the Kāthiāwār area was received from the Development Commissioner for the Port of Kandla. It then became necessary to take up the consideration of the provision of a suitable basic geodetio control. The existing geodetic triangulation in the area consists of two secondary series, viz., Kutch Coast Series (No. 35) and Kutch Coast-line Series (No. 39). It was decided to strengthen this triangulation by the measurement of a geodetic base, reobservation of some weak triangles and the establishment of Laplace stations.

Information was also received that the Marine Survey of India would also be carrying out some triangulation and levelling near the Port of Kandla and in the Kandla, creek. A liaison was established with this department and the Marine Survey of India agreed to base their work on the control provided by the new primary triangulation.
2. Reconnaissance.-The first step towards the execution of the above programme was to have the area rapidly reconnoitred and to select a suitable site for the geodetio base.

A small detachment consisting of Mr. U. D. Mamgain, B.so., Offioer Surveyor and two computers was formed and left Dehra Dūn on 27th May 1949, artiving at Kandle on lst June 1949.

The programme of reconnaissance was to visit all old G.T. stations and permanent levelling bench-marks between Vandhia S. and Chitrod H.S. in sheet 41 I and Sāmatra H.S. and Värär H.S. in sheet 41 E. (See Chart II).

There was barely a month at the disposal of the detaohment in which to complete the reconnaissance as the monsoon starts in these
parts towards the end of June. There had been insufficient rain during the two previous years and drought and famine conditions were prevailing in the area. The heat was abnormal and movement by carts would have been slow. A jeep hired from the Government Stores Department Bhuj was found to be of very great help.

As a result of the reconnaissance a site for the proposed new base-line was selected near Mānāba, about 60 miles north-east of Kandla. A stretch of flat ground extending for about six miles in a north-westerly direction was located. Mānāba H.S. is an old G.T. station fixed in the year 1856. The upper mark-stone of this station was missing, but the lower mark-stone was in tact. In order to simplify the base-extension figure it was decided to make this station into one end of the base-line and to build a new station at the other end.

All the other G.T. stations except Khari Rohar S. and Rahiāda S. were found to be usable after minor repairs. Khari Rohar S. had completely disappeared and a new station was built about $3 \frac{1}{2}$ miles north of it, and was named Naransar Tarai S. A new station was also built at Rahiäda. It is called Rahiäda (New) S .

Kānmer H.S. and Chitrod H.S. were selected as Laplace stations on the eastern end of the series and Sāmatra H.S. and Vārär H.S. on the western end.

All the permanent levelling bench-marks in the area appeared to have remained undisturbed.

The detachment closed its work at Morvi on 28th June 1949 and arrived in Dehra Dün on lat July 1949 to prepare for the final programme during the coming winter.
3. Narrative of the Observation Party.-The programme of observations heving been finally decided upon, Mr. U. D. Mamgain, e.sc., who was in charge of the detachment left Dehra Dūn on 10th October and arrived in Bhuj on the 13th October in advance of the rest of the detachment in order to make arrangements for transport and rations. The rest of the detachment consisting of Mr. J. B. Mathur, Surveyor, one Observatory Assistant, two computers and 28 khaläsīs reaohed Kandla on 15th Ootober. The whole detachment moved to Bhachāu on 17th October 1949. From this place Mr. J. B. Mathur, with his recorder proceeded to Känmer H.S. for Laplace observation, and Mr. U. D. Mamgain, with one Observatory Assistant and one computer started for Mānābe for reoonnoitring and olearing the site for the base.

On 2nd November 1949 Mr . J. B. Mathur rejoined the besemeasurement party efter completing Laplace observations at Känmer H.S. and Chitrod H.S. By this time sufficient ground had been cleared, slopes evened up by digging where necessary and the elignoment of the base-line seoured. Measurement was commenced on 2nd November and completed on 2lst November.

Chart II

Mr. J. B. Mathur then left to make Laplace observations at Vārär H.S. and Sāmatra H.S. and Mr. U. D. Mamgain commenced the observation of triangulation at Mānäba H.S.

After completing Laplace observations Mr. J. B. Mathur returned to Dehra Dūn on 15th December 1949. Mr. U. D. Mamgain completed the observation of triangulation on 25th January 1950 and returned to headquarters at Dehra Dūn.

The detachment was inspected at Sukhpur on 24th December by the Director, Geodetic and Training Circle.

Except for minor cases of malaria and dysentry the health of the detachment remained satisfaotory.
4. Mänāba Base-line.-The base-line is $5 \frac{3}{4}$ miles long with Mānäba H.S. as southern end of the base and Thoriali H.S. (a new station) as the northern end.

Mānāba H.S. is situated on a low hill 54 feet high. For the first 300 yards from Mānāba H.S., the hill face sloped unevenly in height falling by about 23 feet to the edge of low ground. The next mile was along fairly level ground ending on an outcrop of small hillocks covered with bushes. The third mile was also over level ground except that a small näla with uneven banks had to be orossed. The fourth mile of the base-line passed over a depression with näla banks about 8 feet high. The rest of the base-line was fairly even except for a small stretch of undulating ground near the north end.

Exact sites for the north-end-base station and the central-base station were first reoonnoitred. In finalizing this alignment of the base-line, care was taken that the slopes of the individual 24 -metre legs did not exceed 1 in 40 anywhere, and that the route involved the least possible clearing and building. The oentral-base station thus reconnoitred lay exactly midway between and in line with the two end stations.

The description of the terminal stations of the base-line is given in the next para. A pakkea station mark was laid at the oentral-base station, also intermediate points lying on these two halves of the base at about one mile or shorter intervisible distances were next surveyed and de naroated by flags. Alignment of the flags was carried out with the help of a geodetio Tavistook theodolite-the flags being shifted to fall on the exaot bese-line by computing the small satellite correotions between the flage and the straight base-line. The base was thus marked from north end to south end and all obstructions suoh as bushes, trees, mounds, etc., were cleared away. A certain amount of raising, cutting and filling had to be done to overcome inconvenient slopes. The uneven north slope of Mänāba hill was cut down to en average slope of $3 \cdot 5$ feet in 24 metres.

5. Description of Terminal Stations.-Mänäba SE. End Base

 S.-The station oonsists of a platform of loose stones 12 feet \times 12 feet enclosing a solid ciroular isolated pillar about 4 feet in height.A brass plug with a cross mark on it is laid at the centre of the existing pillar vertically above the lower mark (a circle and dot).

Thoriali NW. End Base S.-'The station consists of a platform of loose stones and earth 12 feet $\times 12$ feet enclosing a circular pillar of masonry $3 \frac{1}{2}$ feet in height having two brass plugs, one at the bottom with \oplus mark on it and the other at the distance of 3 feet 1 inch vertically above it.

The station is situated on a high ground surrounded by cultivated land about one mile east of Thoriali village, Pargana Vagad, Kutch State.
6. System of Base Measurement.-The system of measurement was by invar wires in catenary. The Survey of India possesses a number of invar wires 24 metres long with scales 8 cm . long divided to mms. at either end. Nine such wires were obtained in 1914 and two more in 1934. Between the years 1929 and 1937, 10 geodetic bases were measured, but the wires gave considerable trouble on account of their erratic behaviour. Full use was made of the previous experience with them and considerable care was talken in the selection of the good ones for the measurement of this base and in keeping an eye on any sudden changes in length. This was all the more necessary as the observers were quite new to the work.

Wires Nos. 244 and 248 were used for south to north measure and Nos. 252 and 1037 for the reverse direction. Wires Nos. 1038 and 247 were used as sub-standards for daily comparisons of the working wires and No. 245 as the standard for the comparison of the field sub-standards. Comparisons with the field sub-standards were made daily some time before and after the work, in such proportion as to make the mean temperature of comparison the same as the mean temperature at which the bases have been measured. Wire No. 246 was taken as a spare wire for use in the case of a casualty.

The wires were standardized against the Dehra Dūn 24-metre comparator before and after the field season and full details regarding their lengths as well as their coefficients of expansion are given in Chapter VI (Observatories). It will be seen from the results that the wires have held their lengths satisfactorily.

These wires were used with 10 tripods under a tension of 10 kgms . Before the measurement was started, the positions for the tripods were laid out by marks on pegs, accurately aligned and at approximately the correct-intervals. The heights of these pegs were determined by spirit-levelling. During measurement, an assistant measured the heights of the tripods above the pegs but when the rise or fall in a bay exceeded $3 \frac{1}{2}$ feet, this was checked by direct levelling between the tops of the tripods.

The measurement of the base was carried out by Mr. U. D. Mamgain and Mr. J. B. Mathur assisted by one Observatory Assistant one computer and 28 khalasī̀ from 27 th October to 22nd November. The average out-turn wes 65 bays per day. Temperature ranged from $15^{\circ} \mathrm{C}$ to $37^{\circ} \mathrm{C}$.
7. Results of Base Measurements.-The final results are tabulated below :-

\qquad	South to North (Fore)		North to South (Brek)		Mean value of each section
	No. 244	No. 248	No. 1037	No. 252	
	metres	metres	metres	metres	metres
I	1704.4194	1704.4200	1704.4239	1704.4298	1704-4232
11	1890.3072	1898.3748	1890.3099	1896.3730	1806.3712
III	048. 7427	948-7479	948•7470	948.7500	$948 \cdot 7400$
Total I to III	$4549 \cdot 5203$	454日 5427	4649 -5408	4549-5528	4079.6413
IV	1373.8835	1373.8880	1373 -8798	1373-8881	1373.8844
V	082-1467	982 - 1479	082. 1428	982-1478	$982 \cdot 1463$
VI	2374-3143	2374-3203	2374.3107	2374.3217	2374-3180
Total IV to VI	4730-3445	$4730 \cdot 3562$	4730-3383	4730-3656	$4730 \cdot 3487$
Sum of two halves	9279.8738	9279.8989	9279-8791	9279-0082	9279-8900

The discrepancy between the south-to-north and north-to-south measures is $1: 1,300,000$.

The measured length of the base is $9279 \cdot 890$ metres. This length is reduced to Indian feet by the following conversion factors.

1 standard yard $=0.91439920$ metres
1 Indian foot $=0.333331886$ standard yards.
The reduced length is $30445 \cdot 992$ Indian feet.
Reduced to spheroid level, the length of the base is $\mathbf{3 0} 445 \cdot 877$ Indian feet or $4 \cdot 4835285 \log$ feet.

The lengths of the opening and closing sides of the new triangulation in terms of the new base are tabulated below against the older values. The agreement is satisfactory.

Side		Old value	New value
		log feet	\log feet
Chitrod-Kānmer	\ldots	4.8124064	4.8123993
Vārār-Sēmatra	\ldots	4.8255001	4.8254972

8. Laplace Observations.-Laplace observations were made in pairs at Kānmer H.S. and Chitrod H.S. and at Vārär H.S. and Sàmatra H.S. A detailed narrative account and the results of Laplace observations are given in Chapter IV.

Unfortunately the results at Kānmer H.S. and Chitrod H.S. were not found to be in conformity with each other and have consequently been rejected. The error in the published ezimuths derived at Vārär H.S. and Sāmatra H.S. is given below :-

Statione		Astro. Azimuth A to B (1949-50)	Cortn. to reduce Astro. Az. to Geode. tio	Geodetio Azimuth	Published Azimuth	Correction to be applied to published Azimuth
A	B					
Vārār H.S. Sãmetra H.S.	Sāmatra H.S. Vērēr H.S.	$\begin{gathered} \circ \\ 1333 \\ 193 \\ 132 \\ 40 \cdot 7 \end{gathered}$	$*$ -1.5 -1.5	$\left\lvert\, \begin{array}{ccc}\bullet & , & \cdot \\ 13 & 33 & 45 \cdot 2 \\ 193 & 32 & 38 \cdot 7\end{array}\right.$	$\begin{array}{cccc}\circ & . & . \\ 13 & 33 & 54.6 \\ 183 & 32 & 48.2\end{array}$	\% -0.4 -0.6

9. Triangulation Observations.-The observation of triangulation was commenced by Mr. U. D. Mamgain immediately on completion of the base measurement on 23rd November 1949.

The State of Kutch is surrounded on the north, east and south by low lying land which is covered with sea water during the monsoon. This area is known as the Rann of Kutch. On the west it is washed by the sea. To the north of the Rann is a range of broken hills running from east to west. The stations occupied on the eastern end of the series lay in the area between the Rann and the range of hills to the north, while those on the western end were located on hill-tops.

The headquarters of the detachment were established at Chitrod and Mr. S. C. Dhar was sent in advance to post the belio and lampmen. In all 18 stations were occupied, 15 of which were old ones (observed in 1852-58) and three new ones. The new stations are Rahiāde (New) S., Naransar Tarai S. and Thoriali S.

At Mānābe H.S., Sukhpur H.S. and Vārär H.S., the upper mark-stones were destroyed and new upper mark-stones were placed at exactly the same height as the original onos, centred vertically over the lower mark-stones, which were found in tact.

Observations were carried out with a geodetio Tavistock theodolite. Horizontal angles were measured on 8 zeroes with three sets on eaoh zero. Observations were made mostly at night to Argand lemps. At Mānāba, Nara, Charakda and Vārār stations, however, an electric lamp was used and observations were also made during the day to 9 -inoh helios.

Vertical angles were observed at the time of minimum refraction; two eets were usually taken.

Table I exhibits the old and new triangular errors. It will be seen that the new observations are a considerable improvement on the older ones. The mean length of the side of the triangulation is $13 \cdot 4$ miles and the average triangular error is $0^{\prime \prime} \cdot 72$.

TABLE 1.-Comparative statement of triangular errors (new and old)

No. of Triangle	Triangle	Triangular Error	
		New value	Old value
		-	*
1	Mãnäbs, Thoriali, Kānmer	-1.67	
2	Känmer, Mēns̈bs, Chitrod	-0.21	$+0 \cdot 80$
3	Chitrod, Kēnmer, Thoriali	$+1.00$	
4	Chitrod, Thoriali, Mānäbn	$\pm 0 \cdot 92$	
5	Kēnmer, Mänäba, Vendhia	-2.54	
6	Chitrod, Kanmer, Vandhin	+1.19	
7	Chitrod, Mānëba, Vandhia	-1.14	T 3.55
8	Chitrod, Vandhia, Bhachēu	-0.80	-2.88
θ	Vandhia, Bhaohäu, Naca	-0.28	+0.81
10	Bhachāu, Nera, Chitrod	$+0.05$	
11	Nara, Chitrod, Vandhia	-0.68	-2.03
12	Nara, Bhachāu, Käkarva	$+1.42$	-2.27
13	Käkarya, Bhaohāu, Rahieda New	$+0.24$	
14	Rahilda Now, Bhachäu, Sukhpur	+0.31	
15	Rahiads New, Sukhpur, Jhuran	+0.08	
18	Thuran, Sukhpur, Charakda	-0.03	-0.11
17	Charakda, Sukhpur, Narmi Sar Tarai	-1.12	
18	Charakda, Naran Sar Tarai, Shinnya No. 1	-0.98	
19	Charakda, Shinaya No. 1, Khātrod	-0.46	
20	Charakda, Khätrod, Jhuran	-0.59	-2.36
21	Charahda, Khātrod, Boladi	-0.58	
22	Khätrod, Bolädi, Jhuran	+1.13	-2.64
23	Bolädi, Jhuran, Charakds	+1.13	-1.70
24	Bolādi, Khätrod, Sēmatra	$+0.14$	-0.75
25	Khätrod, Seamatra, Värar	-0.04	-1.88
28	Sämatra, Vărär, Bolādi	+0.23	
27	Värär, Bolädi, Khātrod	+0.41	+0.00

The differences between the old and new horizontal angles are tabulated in Table 2. The differences range from $-3^{\prime \prime} \cdot 7$ to $+4^{\prime \prime} \cdot 9$.

TABLE 2.-Differences between the old and new horizontal angles

Name of station		Observed angle						Old minus Nevf
		Old (1852-53)			New (1949-0̆0)			
		-	,	"	-	,	*	"
Kânmer	H.S.	61	37	46.83	61	37	48.38	-1.55
Chitrod	H.S.	48	07	27.64	46	07	28.04	-0. 50
Mānāba	H.S.	72	14	45-40	72	14	44.45	+0.95
Chitrod	H.S.	60	37	$34 \cdot 23$	69	37	35.98	-1.75
Mänāba	H.S.	63	53	08.73	53	53	11.28	-2.55
Vandhia	S.	50	20	14.26	56	29	14.65	-0.39
Chitrod	H.S.	83	02	25.08	88	02	23. 20	+2.78
Vandhia	S.	40	17	57.05	40	17	59-17	-1.22
Nara	H.S.	51	39	38.70	51	39	38.95	-0.19
Cbitrod	H.S.	49	40	$29 \cdot 17$	49	40	28.30	+0.78
Vandhia	S.	101	30	47-86	101	30	$45 \cdot 07$	$+2.09$
Bhsoluax	H.S.	28	48	47.09	28	48	48. 17	-1.08
Vandhia	S.	61	12	49.01	61	12	$46 \cdot 50$	+3.41
Bhachāu	H.S.	49	04	$22 \cdot 34$	49	04	23.34	-1.00
Nara	H.S.	69	42	$48 \cdot 35$	00	42	51.85	-3.60
Bheohêu	H.S.	20	15	$35 \cdot 25$	20	15	$3 \overline{5} \cdot 17$	+0.08
Nara	H.S.	121	22	27-11	121	22	$30 \cdot 80$	-3.69
Chitrod	H.S.	38	21	56.81	38	21	54-81	+2.00
Nara	H.S.	58	10	67.32	58	10	52.41	+4. 91
Bhaohāu	H.S.	39	08	$29 \cdot 41$	39	06	30.55	-1.14
Käkarya	H.S.	82	42	$30 \cdot 48$	82	42	$36 \cdot 58$	-0.08
Jhuran	H.S.	62	30	14.37	62	30	$13 \cdot 48$	+0.89
Sukhpur	H.S.	64	30	41.92	64	30	41.81	+0. 31
Charalsde	H.S.	52	59	04.90	52	59	08.02	-1.12
Jhuren	H.S.	4	48	08.41	4	48	11.01	-2.60
Charakda	H.S.	78	31	49.22	78	31	40.12	$+3 \cdot 10$
Khätrod	H.S.	56	40	05.86	56	40	04.59	+1.27
Charsida	H.S.	42	41	25.50	42	41	24.42	+1.17
Kbätrod	H.S.	96	51	$45 \cdot 18$	98	61	$44 \cdot 81$	+0.37
Bolädi	H.S.	40	20	$53 \cdot 54$	40	26	52.36	+1.18
Kbätrod	H.S.	40	11	39-32	40	11	40.22	-0.90
Bolädi	H.S.	91	05.	58.92	91	05	56.01	$+2 \cdot 91$
Jhuran	H.S.	48	42	$25 \cdot 32$	48	42	23.65	+1.77
Bolēdi	H.S.	50	30	05.38	50	39	03-65	+1.73
Jhuran	B.S.	03	30	33.73	93	30	34.58	-0.83
Charskda	H.S.	35	50	$23 \cdot 63$	35	50	21.70	+1.03
Bolddi	H.S.	51	23	$31 \cdot 61$	51	23	31.57	+0.04
Khătrod	H.S.	96	02	55-05	$\theta 8$	02	6.5 .80	-0.75
Sxama	H.s.	32	33	$35 \cdot 63$	32	33	34.03	+1.60
Kbātrod	H.S.	39	27	07.78	39	27	07-98	-0.20
SAmatra	H.S.	72	61	17.71	72	51	17.38	+0.33
VErar	H.S.	67	41	37-68	67	41	36-16	+1.40
Söruatra	H.S.	40	17	$42 \cdot 08$	40	17	$43 \cdot 35$	-1.27
Varär	H.S.	109	01	33.48	109	01	32-24	$+1.25$
Bolsdi	H.S.	30	40	$45 \cdot 62$	30	40	$45 \cdot 45$	+0.17
Varis	H.S.	41	10	55.93	41	19	60.08	-0.15
Bolsdi	H.S.	82	04	17.23	82	04	17.02	+0.21
Khatrod	H.S.	66	35	47.27	56	35	47.82	-0.65

10. Heights.-Table 3 shows a comparison of the new values of the heights adjusted to spirit-levelling, with the older values. The agreement on the whole is very satisfactory.

The sides of the geodetic triangulation were on an average about 13 miles long and the stations are mostly located on low bare rocks. The observations for vertical angles were normally taken between 3 and 4 p.m. and it was found that the values of the coefficient of refraction k as derived from reciprocal observations were very irregular and were invariably less than the normal values. They ranged from 0.02 to 0.07 as against the expected value of 0.08 . At some low stations (with heights of 100 feet or so), the refraction was even negative. These low values of the coefficient of refraction are no doubt due to large negative values of the lapse rate near the ground surface.

Despite the above, the average triangular errors obtained by taking the mean of the reciprocal observations were very satisfactory being about 2 feet, the maximum being $7 \cdot 4$ feet.

TABLE 3.-Comparative statement of heights (old and new)

Serial No.	Neme of Station		Old heights (1852-58)	Final heighta adjusted to spirit-Ievelling (1949-50)	$\begin{aligned} & \text { Difference } \\ & \text { (Old - New) } \end{aligned}$
			feel	feet	feet
1	Känmer	H,S.	$304 \cdot 5$	303.9	+0.6
2	Chitrod	H.S.	$490 \cdot 0$	$490 \cdot 4$	-0.4
3	Mānäbs*	H.S.	..	52.8	..
4	Thoriali \dagger	S.	\cdots	114.9	\cdots
5	Vandhia	H.S.	116.4	$115 \cdot 5$	$+0.9$
0	Nara	B.S.	$713 \cdot 0$	711.6	+1.4
7	Bhaokāu	H.S.	$303 \cdot 7$	$302 \cdot 8$	+0.8
8	Kākarva	H.S.	465.0	462.9	+2.1
9	Hahiēda New \dagger	S.	..	21.3	
10	Sukhpur	H.S.	357.2	356-5	$+0.7$
11	Jhuran	H.S.	628.0	624.1	$+1.9$
12	Charakda	H.S.	418.5	$417 \cdot 6$	$+0.0$
13	Khātrod	H.S.	$1145 \cdot 0$	1144.4	+0.6
14	Bolādi	H.S.	978.0	076.2	$+1.8$
15	Shinega No. 1	H.S.	217.0	$215 \cdot 7$	$+1.3$
16	Sēmatrs	H.S.	984-0	083. 5	+0.5
17	Vērar	H.S.	1128.0	1128.8	-0.8
18	Naranaar Terai \dagger	S.	..	$96 \cdot 7$..

[^0]II. Connection with Triangulation by Marine Survey.Chart III shows the Hydrographic triangulation of Kandla, which is based for scale and azimuth on the side Shinaya No. 1 H.S.Naransar Tarai S. of the Survey of India triangulation.

The hydrographic survey of Kandla and approaches was carried out by the Marine Survey of India simultaneously with the observation of the geodetic triangulation described above and the topographical triangulation in the area carried out by No. 6 Party of the Southern Circle, Survey of India. Hitherto the hydrographic surveys were not extended sufficiently inland to effect proper connection with the primary or topographical triangulation of the Survey of India and the connection of the hydrographic triangulation of Kandla to the geodetic triangulation of the Survey of India is a happy beginning.

The average trianguilat error of the main triangulation is $3^{\prime \prime} \cdot 2$ and that of the Kandla creek triangulation $4^{n} \cdot 1$. The observing of the Kandla creek triangulation was carried out with Tavistock theodolites, but most of the other stations were observed with Wild T2 theodolites.

Due to mirage, refraction, heat and haze procise observations could only be taken in the morning and evening for about an hour or even less and observations at nearly all stations were made during this brief period. Observations at night were impracticable.

Two short check bases were measured one at Hansthal and the other near Kandla creek.

The length of side F-Bf (near Hansthal) as obtained in terms of the geodetic side Shinaya No. 1 H.S.-Naransar Tarai S. (which in turn is derived from the Mānāba geodetic base) is $\mathbf{1 2 5 3 2 \cdot 2 5}$ feet and that in terms of the measured short base is 12531.55. The difference is 0.68 feet or $\mathbf{1}$ in 18400 (spprox.).

Similarly the length of side B-Af (near Kandla creek) as obtained in terms of the Mänäba geodetio base is 4051.05 feet and thet in terms of the measured short base is $\mathbf{4 0 5 0 . 7 2}$ feet. The difference is 0.33 feet or 1 in 12,300 (approx.).

The above cheoks on the scale of the triangulation are quite satisfactory.
12. Triangulation in the Andamans.-Technical Report 1948-49, Part III, Chapter I, para 5 gives a brief account of the existing triangulation in the Andamans and Nicobar Yslands. It has been pointed out there that the existing triangulations both in the Andamans and in the Nicobars are not connected to the Indian triangulation and are only very weakly connected to each other. The triangulations themselves are far from being precise being poorly observed and based on inacourate base measurements and weakly determined astronomical latitudes and longitudes.

The Government of India has recently ordered an air survey of the Andamens and the Car Nicobars for preparing new maps of

these islands. A new geodetic framework to provide a basis for these new maps is considered necessary and it is proposed to cover the Andaman Islands with a series of well conditioned triangles to be observed with a geodetic Tavistock theodolite. A precise geodetic base will also be measured and Laplace stations established with an astrolabe.

In the Car Nicobars no triangulation or geodetio base measurement has been planned at present. The area will be covered by traverses which will be suitably controlled by observed astronomical azimuths with scale checked at intervals by short base measurements.

A full account of the new work will be published in the next Teohnical Report.

Chapter II

LEVELLING

by B. L. Gulatee, m.a. (Cantar.), f.r.i.c.S., m.i.s. (india)
13. General.-There was a considerable dernand for levelling from various authorities during the year under report. Nine detachments took the field in various parts of India, three being employed on levelling of high precision, one on levelling of precision and five on secondary levelling.

One high precision levelling detachment under Mr. J. K. Donald (Surveyor) first levelled the portion Jaleswar (Jellasore) to Balasore in the fore direction and then the line Howrah to Jaleswar in the back direction and then proceeded to Kārwär and observed the line from Kärwār to Hubli in the back direction. The back levelling of the portion from Jaleswar to Balasore was carried out by Mr. A. K. Bhattacharjee during the same season from 16th to 30th June 1950.

The high precision levelling detachment under Mr. B. P. Rundev (Surveyor) carried out the levelling in the back direction from Vizianagram to Vizagapatam and from Vizagapatam to Raipur.

The high precision line from Howrah to Balasore was carried out to test the stability of bench-marks at Howrah relative to Jellesore and Balasore. The other two high precision levelling lines, viz., Kärwār to Hubli and Raipur to Vizianagram form part of the new High Precision Levelling net of India.

The following lines of precision levelling were carried out for the River Surveyor to the Commissioners for the port of Calcutta to provide height datums for his tide-gauges on the Hooghly river :-
(i) Calcutta Mint to King George's Dock,
(ii) Calcutta Mint to Cossipore, and
(iii) Howrah to Purbasthali.
A special river crossing detaohment consisting of Messrs. A. K. Bhattacharjee (Class II) and S. Vaikuntanathan (Class II) with 12 chalāsiss was formed to carry out levelling aoross the Hooghly at two places on the line from Diamond Harbour to Dublat where the span of the river was $1 \frac{5}{\theta}$ miles and $1 \nmid$ miles respectively. This detachment also carried out river orossings at five other places on the line Howrah to Jaleswar.

The secondary levelling detachments were employed as follows:-
(i) One detachment for irrigation projects of Lower and Upper Narbada Divisions in the Madhya Pradesh.
(ii) Two detachments for the Gandak irrigation project of the Government of Bihār.
(iii) One detachment for the Kosi irrigation project, and
(iv) One detachment for the development project of the Port of Kandla.
14. Summary of out-turn-The total out-turn of work carried out during the period under report is as follows :-

> (a) High Precision Levelling in one direction $\quad . \quad 6$ (b) High Precision Levelling in both directions \ldots

The details are given in Table 12.
15. Balasore to Howrah.-Detachment No. 1 under Mr. J. K. Donald (Surveyor) with a recorder and 13 khalāsīs left Dehra Dūn for the field on 4th October 1949. Work was commenced from bench-mark No. $78 / 73 \mathrm{~K}$ at Balasore on 8th October 1949 and closed at bench-mark No. 353/79 B at Calcutta Mint on 10th February 1950.

At Jaleswar the work was started from bench-mark No. 244 and was carried to Contai via Mohanpur and Bālighai. From Contai the metalled road to Rasūlpur was followed and then the work was carried along the bund on the right bank of the Hooghly.

The country was plain but swampy at places. Streams presented great diffioulty all along the coastal area, and part of the work lay in congested industrial area in the vicinity of Calcutta.

For transport, bullock carts were used upto Rasülpur, from where the work was done along the coast and a country boat had to be permanently engaged.

Connection was made to Kudi Tower Station, to a few standard and embedded bench-marks, and to a few marine bench-marks located on the right bank of the Hooghly.

Weather conditions remained good except for a few days in October 1949 when rains interrupted worls for four days. The health of the detachment was good. Vaccination and oholera inooulation were taken by all the personnel of the detachment at Diamond Harbour.

During the course of the work, four big rivers namely Rasūlpur, Haldi, Rūpnāräyan and Damodar had to be crossed. The crossing was done by a special River Crossing Detachment (see para 18).

The revision of the old levelling from Burdwān to Balesore completes two circuits Rāniganj-Burdwēn-Howrah-MidnaporeRāniganj (304 miles) and Midnapore-Howrah-Jellasore-Midnapore (277 miles). See Chart V. Their closure errors are satisfactorily small being $+0 \cdot 132$ feet and +0.345 feet respectively.

As mentioned on page 13 of Technical Report 1948-49, Part III, this levelling was carried out in continuation of Burdwan-Howrah line to test the sinkages of the bench-marks in the deltaic region of south Bengal. It was not possible to get an independent connection to mean sea-level at False Point as the old bench-mark of reference of the tidal observatory at False Point has now been destroyed.

The heights of the permanent bench-marks at Burdwān, Kidderpore New Dock Sill, Jaleswar and Balesore as determined from older and new levellings are as follows :-

No.	Brief desoription	Distance	Publighed height (Older levelling)	Unadjusted orthometrio height from new levelling
		miles	feet	feet
118/73 M	Typo A, Burdwān	0.0	93.182	03. 182
359/79 B	Kidderpore New Dooks Sill ..	81.6	$10 \cdot 175$	15.808
80/73 0	E.B.M. Jaleswar ..	237.0	$41 \cdot 973$	41.037
78/73 K	S.B.M. Balasore	$270 \cdot 1$	44-863	44.689

It would be seen that the relative heights of Burdwān, Jaleswar and Balasore have remained unaltered; the disorepancies being well within the range of levelling errors. The published heights also include significant adjustment corrections, and the apparent change in the beight of Kidderpore New Dock Sill is also not conclusively proved. Chart VI shows the changes of heights of old benoh-marks on the line Burdwän-Howrah-Jellasore-Balasore, as revealed by present levelling. Their numerical values are given in Table 1.

A comparison with Chart XXXV, of Technical Report 1948-49, Part III shows that changes on the right bank of the Hooghly are much less than those on the left bank near Diamond Harbour, where there were individual sinkages of as muoh as $1 \frac{1}{2}$ feet. On the whole as expected in such alluvial areas the bench-marks between Howrah and Contai have undergone a slight subsidence.

As mentioned in the preceeding Technical Report such sinkages are no proof of the general down warping of the crust.

Prontod at the Barroy of Inde ofioee (PR2.).

CHANGES IN HEIGHTS OF BENCH-MARKS

BURDWĀN TO BALASORE

TABLE 1.-Old and new levelling between Burdwän and Balasore

$\begin{aligned} & \text { B.M. } \\ & \text { No. } \end{aligned}$	Brief Description	Distance from B.M No. $116 / 73 \mathrm{Mat}$ Burdwān	Date of old levelling	Observed heights above (+) or below (-) B.M. No $116 / 73 \mathrm{M}$ at Burdwān		Disorepancy (NemOld)
				Old levelling	Rovised levelling 1947-49	
$\begin{aligned} & \text { Sheet } \\ & 73 \mathrm{M} \end{aligned}$		Miles		feel	feet	feet
118	Burdwān, (Type 'A')	0.0	1924-25	$0 \cdot 000$	0.000	$0 \cdot 000$
138	Coping	$1 \cdot 1$	"	+11.615	+11.598	-0.019
138	Coping	1.0	"	$+10.510$	+10.400	-0.014
114	Pillar	0.2		+ 6.332	$+6.323$	-0.009
115	Burdwān, S.B.M. .	$0 \cdot 0$	1013-17	+5.118	+ 5.095	-0.023
124	Bridge	$4 \cdot 7$	",	+ 0.248	+ 0.174	-0.074
$\begin{aligned} & 135 \\ & (127) \end{aligned}$	Bridge	$7 \cdot 3$	"	$-10 \cdot 375$	-10.438	-0.063
$\begin{aligned} & \text { Sheet } \\ & 79 \mathrm{~A} \end{aligned}$						
85	Belut village (Typs ' B^{\prime})	11.7	"	$\rightarrow 19 \cdot 184$	-19.302	-0.138
86	Resulpur R.S.	$12 \cdot 9$	"	-13.887	-14.038	-0.149
01	Memări R.S.	$18 \cdot 9$	"	-21.860	-22.075	-0.215
${ }^{95}$	Memāri, (Type 'A')	17.7	"	-33.127	-33.394	-0.267
103	Bridge	21.5	"	-38.208	$-38 \cdot 382$	-0.154
106	Step	23.2	-	-38.238	$-38 \cdot 611$	-0.373
109	Naiga village (Type 'B')	25.1	"	-50.030	-60.141	-0.111
112	Pillar	$20 \cdot 6$	"	-47.303	-47.467	-0.164
113	Simlagarh R.S.	$27 \cdot 4$..	-44.281	-44.416	$-0 \cdot 155$
119	Pillar ..	29.9		-49.128	-40.297	-0.171
128	Khonean, (Type 'B')	35.3	"	-61.423	-61.437	-0.014
127	Culvert	$35 \cdot 4$	"	-62.522	$-62 \cdot 550$	-0.028
$\begin{gathered} \text { Sheet } \\ 79 \mathrm{~B} \end{gathered}$						
382	Bridge	$40 \cdot 4$	"	-64.196	-64.252	-0.056
303	Railway bridge ..	$41 \cdot 0$	"	-64.207	-04.222	-0.015
352	Tribenighāt \quad.	$42 \cdot 3$	"	-60.170	-68.141	+0.038
399	Well .	$42 \cdot 5$	"	-50.628	-58.059	-0.031
401	Culvert .	$43 \cdot 3$	"	-58.815	-58.903	-0.088
402	Railway bridge ..	44.1	"	-62.958	-83.023	-0.085
404	Culvert . ${ }^{\text {a }}$.	$45 \cdot 0$		-63.234	-63.241	-0.007
931 (868)	Bēndel, (Type 'B')	$45 \cdot 7$,	-70.055	-70.061	-0.006
(405)						
(348)	Step	$40 \cdot 4$	"	-50.223	$-50 \cdot 247$	-0.019
347	Platform	$4{ }^{46} 7$		-62.117	-62.139	-0.022
030	Bridge	40.0	"	-64.596	-04.673	-0.077
(407) 408	Culvert . .	$47 \cdot 4$	1	-68.300	-68.333	-0.024

TABLE 1.-Old and new levelling between Burdwān and.
Balasore-(contd.)

B.M. No.	Brief Description	Distance from B.M. No. $116 / 73 \mathrm{M}$ at Burdwān	$\left\|\begin{array}{c} \text { Date of } \\ \text { old } \\ \text { levelling } \end{array}\right\|$	Observed heights above (+) or bolow (-) B.M. No. 118/73 M at Burdwān		Disorepanoy (NewOld)
				Old levelling	Revised levelling 1947-49	
Sheat 79B		Miles		feet	feel	feet
411	Circuit house	$48 \cdot 6$	1913-17	$-60 \cdot 305$	-68.374	-0.089
029	Chinsura, (Type'B')	48.9	1913-17	$-85 \cdot 617$	$-6 \overline{0} \cdot 701$	-0.084
(344) 410	Buse of clock tower..	$40 \cdot 1$,	-64.157	-04.213	-0.056
028	Step	49-4	"	-63.554	-63.733	-0.179
(413) 414	Seat of gato	$49 \cdot 6$	"	-63.973	-64-032	-0.059
027	Flooring	$40 \cdot 9$	"	-68.001	$-68 \cdot 103$	-0.102
(415)						
416	Culvert ..	$50 \cdot 6$	"	-68.108	$-68 \cdot 227$	-0.061
419	Pavement	$53 \cdot 3$	"	-69.569	-60.633	-0.004
420	Step . .	53.4	"	-68.138	-68.221	-0.083
421	Flooring	$54 \cdot 0$	"	-67.291	-67.383	-0.092
914 (428)	Champdeni, (Type'A')	$50 \cdot 7$	\because	-70.732	$-70 \cdot 780$	-0.049
334	Bridge	59.2	"	$-71 \cdot 253$	$-71 \cdot 204$	-0.041
439	Coping ... \quad.	01.4	"	-08.374	-68. 502	-0.218
447	Uttarpāra, (Type 'A')	$69 \cdot 0$,	-74.437	-74.485	-0.028
455	Flooring ..	$75 \cdot 2$,	-73.038	$-73 \cdot 062{ }^{\text {* }}$	-0.024
918	Howrah, S.B.M.	74.9	1927-28	-74.411	-74.409*	+0.002
817	Municipal offices	$75 \cdot 0$	"	-71.232	-71.264*	-0.032
804	Step ..	$75 \cdot 2$	"	-74.017	-74.078*	-0.082
453	Post office, Howrah	$75 \cdot 1$	"	-73.867	-73.913	-0.046
920	Plinth	78.5	",	-77.649	-77.715	-0.088
919	Stone	$79 \cdot 0$	"	-71.892	-71.927	-0.035
009	Sibpur . . .	80. 6	"	-70.889	-70.913	-0.024
458	Sluice	83.0	-	-75.618	-75.707	-0.088
013	Step	$84 \cdot 0$	"	-77.355	-77.428	-0.073
264	Flooring	84.5	"	-78.088	-78.162	-0.094
848	Railway bridge ..	$102 \cdot 3$	"	-70.331	-70.681	-0.350
949	Railway bridge ..	$103 \cdot 6$	"	-67.812	-67.823	-0.211
950	Step . .	104.2		-77-192	-77.314	-0.122
880	Ulubāria, (Type'B')	$104 \cdot 2$	"	-81.138	-81.268	-0.128
$\begin{gathered} 050 \\ (246) \end{gathered}$	Canal look .	$104 \cdot 3$	"	-76.392	-76.403	-0.101
955	Step	$104 \cdot 4$		-81.024	-81.137	-0.113
054	Iron bolt of S.B.M.. .	104.5	"	$-77 \cdot 167$	$-77 \cdot 312$	-0.145
053	E. prism of S.B.M. . .	104.5	",	-78.320	-78.478	$-0 \cdot 150$

(Continued)
-Mean value of levelling of 1847-48 and 1948-50.

TABLE 1.-Old and new levelling between Burdwān and Balasore-(concld.)

$\begin{aligned} & \text { B.M. } \\ & \text { No. } \end{aligned}$	Brief Description	Distance from B.M. No. 116/73 M Ht Burdwān	Date of old levelling	Observed height above (+) or below (-) B.M. No. $116 / 73 \mathrm{M}$ at Burdwin		Discrepancy (NewOld)
				Old levelling	Revisad levelling 1947-49	
Sheet 79 B		Miles		feet	feet	feet
952	W. prism of S.B.M. . .	104.5	1927-28	-78.318	-78.469	-0.151
951	Ulubäria, S.B.M. .	$104 \cdot 5$	"	-77.588	-77.736	-0.148
950	Step .. .	$104 \cdot 6$	-	-77.402	$-77 \cdot 654$	-0.162
057	Step	$104 \cdot 0$		-78.632	$-78 \cdot 796$	-0.184
238	Marine Sooket No. 25	$108 \cdot 6$	1881-83	$-77 \cdot 689$	$-77 \cdot 811$	-0.122
237	Flange	$110 \cdot 1$,'	$-80 \cdot 617$	-80.566	-0.049
217	Geonkhāli, (Type 'B')	129.0	"	-77.128	-77.863	-0.735
290	Phulbāria Tower ..	151.5	-	-78.410	$-78 \cdot 672$	-0.262
206	Balughät I.B. .	161.5	"	-76.868	-76.886	-0.220
204	BasuliChak,(Type' ${ }^{\prime}$ ')	184.2	"	-77.849	-77.933	-0.084
$\begin{gathered} \text { Sheet } \\ 79 \mathrm{C} \\ 25 \end{gathered}$	Iron pipe	169.9	"	-82.050	$-82 \cdot 560$	$-0 \cdot 510$
$\begin{aligned} & \text { Sheet } \\ & 730 \end{aligned}$						
63	Kedgeree (E.B.M.) .	178-3	"	-79.839	-79.900	-0.061
74	Hijli	$187 \cdot 3$	\cdots	-72.888	-73.227	-0.350
54	Contai (E.B.M.) .	$190 \cdot 1$	\cdots	$-55 \cdot 728$	-55.708	$+0.020$
55	Pillar	$190 \cdot 3$	"	-50.314	$-50 \cdot 353$	-0.039
45	Kudi, T.S. .	$217 \cdot 2$	1027	-48.969	-47.465	-0.496
$\begin{gathered} 90 \\ (29) \end{gathered}$	Jaleswar, E.B.M. .	$237 \cdot 0$	1927-28	$-51 \cdot 559$	-51.241	$+0.318$
93	Bridge . . .	$238 \cdot 4$	"	-45.030	-45.788	+0.142
100	Mubammad Nagar . . S.B.M.	241.3	"	-48.565	-48.498	$+0.067$
20	Bridge	240.5	"	-65.975	-65.814	$+0 \cdot 161$
102	Basta village .	252-4..		-72.751	-72.030	$+0.121$
104	Briok	$252 \cdot 9$	י'	-04.074	-64.418	+0.156
112	Haldipara, E.B.M. .	$\mathbf{2 5 9}$ - ${ }^{\text {\% }}$	"	$-71 \cdot 488$	-71.234	+0.252
Sheet 73 K						
85	Brick	$266 \cdot 8$		-75.088	-75.009	$+0.077$
135	8.D.O's Office, Balesore	$268 \cdot 2$	1938-40	-48.930	-48.845	+0.285
78	Balasore, S.B.M. ..	270-1	1927-28	-48.713	-48.487	+0.228

16. Kärwār to Hubli.-After completing work at Caloutta the detachment under Mr. J. K. Donald (Surveyor) left for Kärwär in Bombay state and commenced work from bench-mark No. l/48 J on 2nd March 1950. The work was closed on bench-mark 1/48 M at Hubli on 27th April 1950.

The country was very undulating and hilly. As the road passes through dense jungle it was difficult to get bullock-carts for transport and so a motor truck had to be engaged at times. The place was malarious but the health of the detachment remained good.

Connections were made to twa trigonometrical stations namely Ramankop H.S. and Guddhumdhur h.s.

The line Kārwār to Hubli has now been levelled thrice, once in 1873-74, a second time in 1907-08 and again in 1949-50. There were certain inexplicably large discrepancies between the two earlier levellings which could only be attributed to mistakes made by the levellers as the bench-marks were mostly on rock. In particular on page 355 Survey of India G.T.S. Vol. XIX, there is a mention of an unexplained large difference of +0.671 feet between benchmarks a/l3 and 19 and of a similar error at Hubli. It was suspected that this error could only be due to some mistake by the levellers either of 1873-74 or of 1907-08.

The 1949-50 levelling has revealed that the fault lay with the 1907-08 levellers. Although the bench-marks Nos. a/13 and 19 were found destroyed, a comparison was possible at B.M. No. 44/48 J, which is very close to B.M. No. 19 and this differed by about $\frac{1}{2}$ foot from the 1907-08 value. This bench-merk was not included in the 1873-74 levelling.

Table 2 gives differences between the levels of the various bench-marks as evidenced by levelling at the three epoohs in question. Chart VII shows these differences graphically.

Apart from the abnormal local rises and sinkages at a few points such as at bench-marks Nos. $16 / 48 \mathrm{~J}, 17 / 48 \mathrm{~J}$ and $21 / 48 \mathrm{~J}$, there appears to be a sinkage of the area relative to Kärwär. This sinkage becomes more pronounced east of Yellapur.

But the existing evidence cannot be regarded as conolusive as apart from the 1907-08 levelling being suspect, there are no rock-out bench-marks either, east of No. 2/48 I. In fact, EBM. 1/48 M at Hubli at the extreme north end of the area shows actually a rise since 1873-74.

It would thus appear that the data is not sufficient to draw firm quantitative conclusions regarding the stability of this region. For future study, new standard bench-marks have been established at Kärwàr and Hubli respectively to supplement the old embedded benoh-marks at these places.

TABLE 2.-Old and new levelling from Kärwār to Hubli

TABLE 2.-Old and new levelling from Kärū̄̄r to Hubli-(contd.)

Benoh-marks of the original levelling that were conneoted in year 1940-50			Distance from Kärwèr	Observed heights above (+) and below (-) Kārwàr as determined in			Difference in height (Revised-original)		
Topo. No. of benoh. marks	Old Nos.	Brief description		$\stackrel{i}{1873-74}$	$\stackrel{i i}{i 907-08}$	$\stackrel{\text { iii }}{1949-50}$	$\begin{gathered} (\mathrm{ii}-\mathrm{i}) \\ 1907-08 \\ \operatorname{minus} \\ 1873-74 \end{gathered}$	$\begin{gathered} (\mathrm{iii}-\mathrm{ii}) \\ 1940-50 \\ \min u s \\ 1907-08 \end{gathered}$	$\begin{gathered} (\mathrm{iii}-\mathrm{i}) \\ 1949-50 \\ \min u s \\ 1873-74 \end{gathered}$
			Miles $25 \cdot 2$	feet	feet $+\quad 59.541$	feet $+\quad 59.488$	feet	feet -0.053	feet
19/48 J	.	Embedded at Agsur	$25 \cdot 2$		+ 59.541	+ 59.488			
20/48 J		Stone step	$25 \cdot 3$		$+\quad 59.403$ $+\quad 3075$	+ 59.344		-0.059	
21/48 J	6	Wheel gaurd atone	$28 \cdot 0$	$\begin{array}{r}\text { a } \\ + \\ \hline\end{array}$	$+\quad 30.275$ $+\quad 80.058$	+ 29.811	-0.513	-0.464	-0.977
22/48 J	7	Wheal gaard stone	$29 \cdot 9$	+ 80.158	+ 80.058	+ 79.940	-0.100	-0.118	-0.218
27/48 J	\cdots	Rock	$36 \cdot 1$		+ 124.912	$+124 \cdot 887$		-0.025	
	$\stackrel{9}{9}$	Cut on culvert	31.7	$\begin{array}{r}\text { a } \\ +\quad 67.675 \\ \hline\end{array}$	a7.671 $+\quad 97.713$	Destroyed	-0.004 +0.100		
28/48 J	b/11	Rock	$38 \cdot 4$ $38 \cdot 1$	a $+\quad 97.613$ $+\quad 101.497$	$\begin{array}{r}\text { 97.713 } \\ +\quad 101.377 \\ \hline\end{array}$	+ 97.695	+0.100 -0.110	-0.018	+0.082
	0/11	Cat on bridge	$38 \cdot 1$ $38 \cdot 8$	a $+\quad 101 \cdot 497$ $+\quad 87.403$	$+\quad 101 \cdot 377$ $+\quad 87 \cdot 507$	Destroyed $+\quad 87-487$	$-0 \cdot 110$ +0.104		+0.084
$30 / 48 \mathrm{~J}$ $31 / 48 \mathrm{~J}$	d/11	Rook ..	$38 \cdot 8$ $41 \cdot 2$	+ 87-403	$+\quad 87.607$ $+\quad 161.310$	+ 87.487 $+\quad 161.267$	+0.104	-0.020 -0.043	+0.084
32/48 J	.	Embedded at P.W.D. Stores Ramanguli	42.4	.	+ 152.933	+ $152 \cdot 845$.	-0.088	
38/48 J	.	Rock \quad.	$50 \cdot 4$		+674.415	+ 674-369		-0.046	.
$37 / 48 \mathrm{~J}$.	Cess-pool	$52 \cdot 3$	\cdots	+1096.384	+1096.320	.	-0.064	
$38 / 48 \mathrm{~J}$	\cdots	Rock .	$54 \cdot 2$		+1439.993	+1439-926		-0.067	.
39/48 J	.	Culvert	$54 \cdot 9$		+1464.459	$+1464 \cdot 388$.	-0.071	.
40/48 J		Culvert	$56 \cdot 8$		+1563.133	$+1563.057$		-0.076	
	b/12	Cut on bridge abutment	$42 \cdot 0$	+ $150 \cdot 800$	+150.811	Destroyed	+0.011		
41/48 J	13	Huge boulder ...	$60 \cdot 3$ 44.0	+ 167.908	+1798.086 $+\quad 167.922$	+1798-000	+0.016	-0.086	\cdots
43/48 J	13	At Forest Ofice Yellapur	$60 \cdot 4$	+ 18\% 300	+1778-443	+1778-307	+0.016	-0.136	

TABLE 2.-Old and new levelling from Kāru:är to Hubli-(contd.)

Bench-marks of the original levelling that were connected in year 1949-50			Distance from Kārwār	Observed heighta above (+) and below (-) Kärwär as determined in			Difference in beight (Revised-original)		
Topo. No. of bench. marks	Old Nos.	Brief desoription		$\begin{gathered} i \\ 1873-74 \end{gathered}$	$\begin{gathered} \text { ii } \\ 1907-08 \end{gathered}$	$\stackrel{\text { iii }}{1949-50}$	$\begin{gathered} (i i-i) \\ 1907-08 \\ \min u \\ 1873-74 \end{gathered}$	$\begin{gathered} (\text { iii- ii }) \\ 1949-50 \\ \min u s \\ 1007-08 \end{gathered}$	$\begin{gathered} (i i i-i) \\ 1949-50 \\ \min 4 \\ 1873-74 \end{gathered}$
			Miles	feet	feet	feet	feet	feet	feet
44/48 J	a/23		$46 \cdot 7$ 60.5	+ 168.578	+ 168.588 +1769.244	Destroyed +1768.764	+0.010		,
	19	Cut on oolvert \quad.	69.9	$+1776.398$	+1789.249 +1777.079	${ }_{\text {Destroyed }}^{+1768 \cdot 764}$	+0.681	-0.520	\cdots
$45 / 48 \mathrm{~J}$ $46 / 48 \mathrm{~J}$.	Embedded at Yellāpur	${ }^{60.9}$	+178.	+1759.927	+1759.827		-0.100	\cdots
		Rook	84.0	.	+1815.700	+1815.618	..	-0.082	\cdots
47/48 J	.	Culvert ..	65.7		+1757.099	+1757.003	.	-0.096	
1/48 I	\because	Culvert ..	67.7 69.9	\cdots	+1722.850	+1722.724	\because	${ }_{-0.126}$	\cdots
3/48 I	\cdots	Wheol gaurd stone :	69.9 71.7	\cdots	+1770.900 +1775.139	$+1770 \cdot 854$ +1774.993	\cdots	-0.046	
4/48 I	..	Culvart ..	74.1	.	+1775.139 +1711.726	+1774.993	.	-0.146	\cdots
		Culvert ..							
9/48 I	\because	Bridgr ${ }^{\text {a }}$.	78.9 85.1	\because	+1773.678 +1689.169	+1773.543 +1689.042	\cdots	-0.135 -0.127	
10/48 I	.	Culvert \because	88.3		+1689.169 +1765.799	$+1689 \cdot 042$ $+1765 \cdot 580$	\because	-0.127 -0.219	\cdots
11/48 I	..	Embedded at Dastiko P	88.5		+1842.646	+1842.649 +185		-0.219 -0.197	\cdots
12/48 I	..	Däk bungalow ..	88.6	\cdots	+1846.586	+1846-374	.	-0.212	
14/48 I	.	Bridge . .							
46/49 M	\because	Culvert ..	91.5		+1847.468	+1847.290	\because	-0.158 -0.178	\cdots
$47 / 48 \mathrm{Ma}$ $48 / 48 \mathrm{M}$	\because	Culvert ..	93.9	.	$+1804.538$	+1864.368		-0.170	
49/48 M		Culvert ${ }^{\text {cos }}$	95.6 97.4		$+1935 \cdot 898$ +1940.567	+1955.735 +1940.368		-0.163	
				\cdots	+1940.567	+1940.368	\cdots	-0.199	

TABLE 2.-Old and new levelling from Kāruār to Hubli-(concld.)

Benoh-marks of the ariginal levelling that were conneoted in year 1040-50			Distance from Kärwàr	Observed heights above (+) and below (-) Kärwär as determined in			Diference in height (Revised-original)		
Topo. No. of benohmarks	Old Nos.	Brief description		$\stackrel{i}{i}$	$\stackrel{\text { ii }}{1907-08}$	$\stackrel{\text { iii }}{1949-50}$	$\begin{gathered} (\mathrm{ii}-\mathrm{i}) \\ 1907-08 \\ \operatorname{minus} \\ 1873-74 \end{gathered}$	$\begin{gathered} (\mathrm{iii}-\mathrm{ii}) \\ 1949-50 \\ \min u s \\ 1907-08 \end{gathered}$	$\begin{gathered} (\mathrm{iii}-\mathrm{i}) \\ 1949-50 \\ \text { minus } \\ 1873-74 \end{gathered}$
50/48 M $52 / 48 \mathrm{M}$ $7 / 48 \mathrm{M}$ $2 / 48 \mathrm{M}$ $8 / 48 \mathrm{M}$	28	Bridge Bridge Embedded at Habli Flooring Flooring .	$\begin{aligned} & \text { Miles } \\ & 100 \cdot 4 \\ & 103 \cdot 3 \\ & 104 \cdot 0 \\ & 104 \cdot 2 \\ & 104 \cdot 3 \end{aligned}$	$\begin{gathered} \text { feet } \\ \ddot{ } \\ +204 \cdot 200 \end{gathered}$	feat $+1954 \cdot 728$ $+1977 \cdot 768$ $+2048 \cdot 893$ +2084.435 +2067.058	feet +1954.518 $+1977 \cdot 554$ +2048.698 +2084.203 +2086.858	feet \cdots +0.693	feet -0.210 -0.214 -0.195 -0.232 -0.200	feet \cdots +0.498

17. Raipur to Vizagapatam.-Detachment No. 2 under Mr. B. P. Rundev (Surveyor), with one recorder and 13 khalāą̀s took up the levelling in the back direction of the high precision line from Vizagapatam to Raipur which was levelled in the fore direction by Mr. H. C. Gupta (Surveyor) in 1947-48. He commenced work at Vizagapatam on 15th October 1949 from Standard Benchmark No. 91/65 O and followed the B. N. railway line to Vizianagram via. Kottavalasa. Heavy railway traffic caused considerable disturbance in the course of work in this section.

Necessary check-levelling was carried out at Vizianagram. The section from Vizianagram to Raipur followed the VizianagramRayagada road up to Rambhadrampuram whence the line turned to Salur and followed the main road going over the Ghats to Jeypore. From Jeypore the work continued along Jeypore-Nowranganpur road, and thence to Raigarh and joined the forest road at Borai. From Borai it ran along the old cart track to Sihawa via Sitanadi. From Sihawa it followed the old road to Dhamtari.

The Mahānadi river which came in the way was crossed over the weir opposite Rudri Canal Head-works as the river was altogether dry. Thence the work continued to Raipur and closed on standard bench-mark No. 173/64 G (Type P) on 15th May 1950.

For transport, bullock carts were used on a permanent basis except in the section between Salur and Nawrangpur where they could not be had and so motor transport had to be resorted to.

The country was not easy. Section Vizagapatam-Vizianagram which followed the railway line gave trouble due to shimmer which was present from sunrise to sunset. The country between Vizianagram and Dhamtari was rather undulating; in particular the Ghat section between Salur and Jeypore was very steep.

All bench-marks were previously laid down by the fore-leveller except at a few places where new rock-cut bench-marks were made and connected by the back leveller in fore and back directions. Two trigonometrical stations of Bilaspur Meridional Series, viz., Hathbena H.S. and Sirsi H.S. and five minor stations were also connected by branch-lines.

The country was very malarious and many of the khalāsīs suffered but recovered quite quickly. Medical help was available almost all over the area.

Starting with the published height of standard bench-mark No. 173/64 G (Type P) at Raipur, viz., $997 \cdot 765$ feet above M.S.L., this season's levelling gives the height of the standard bench-mark at Vizianagram (B.M. No. $237 / 65 \mathrm{~N}$) to be $216 \cdot 811$ feet. The published height of this bench-mark es derived by older precision levelling of $1894-95$ is $216 \cdot 130$ feet. The discrepancy of $0 \cdot 681$ feet has been adjusted between Reipur and Vizianagram (a distance of 338 miles), eaoh bench-mark receiving a correction proportional to its distance from Raipur.

Similarly accepting the published height of the standard bench-mark at Vizianagram, the closing error at standard bench. mark Vizagapatam (B.M. 71/65 O) is 0.266 feet, and this has been distributed between the portion Vizianagram to Vizagapatam (41 miles).

The closing error of the circuit Bhadrakb-Vizianagram-RaipurBhadrakh is $-\mathbf{2} \cdot 484$ feet. This large closure error needs critical scrutiny. There are several peculiarities in this circuit. Firstly, part of the line from Bhadralkhto Vizianagram was carried out in 1938-40 by inexperienced and unsteady observers. Again, on both sections of the lines-Raipur to Vizianagram and Vizianagram to Vizagapatam, the route followed was the same as that of the old level lines Nos. 37 and 36 of the first precision level net of India of 1858-1909 (see Chart IV). There are quite a number of bench-marks common to the old and new levellings. The discrepancies especially on the section Raipur-Vizianagram are unduly large. See Table 3.

Thus from embedded bench-mark No. $13 / 64 \mathrm{H}$ at Gatasili to rock-cut bench-mark No. $11 / 64 \mathrm{H}$ there is a change of level of $0 \cdot 121$ feet, which is increased to 0.208 feet at B.M. $10 / 63 \mathrm{H}$. After that there is again a sudden change of 0.232 feet between rock-cut benchmarks Nos. $6 / 63 \mathrm{H}$ and $5 / 63 \mathrm{H}$, the total ciscrepancy at B.M. $5 / 63 \mathrm{H}$ between the old and new heights being 0.513 feet. The discrepency appears to systernatically increase still further and becomes about $0 \cdot 8$ feet at rock-cut B.M. 28/65 I and remains so as far as embedded B.M. 77/65 J, when there is a further rise; the discrepancy at B.M. 68/65 J (rock) becoming as large as $1 \cdot 2$ feat, which persists till B.M. 4/65 J on rock. There is then a short fall of half a foot from rock-cut B.M. $49 / 65 \mathrm{~N}$ to rock-cut B.M. $48 / 65 \mathrm{~N}$.

In the new levelling, there are also large systematic differences between the fore and back levellers.

As the majority of the bench-marks are cut on rook, and the area is not known to be subject to eny tectonic activity, the explanation of these large discrepancies can only be found in some unexplained errors in the levellings.

By completion of the levelling from Raipur to Vizagapatam, it is now possible to compute the direct relation between the M.S.L.'s at Bombay and Vizagapatam. This is being done and the result will be included in the next Technical Report.

TABLE 3.-Old and new (1948-50) levelling from Raipur to Vizianagram

B.M. Nos.	Brief description	Distance from B.M. No. 173/64 G	Date of original levelling	Observed haight above $(+$) or below (-) B.M. No. 173/64 G		Disoropancy (NemOld)
				Old	Now	
		Miles		feel	feet	feel
173/64 G	S.B.M. at Rnipur. .	$0 \cdot 0$	1894-07	$0 \cdot 000$	$0 \cdot 000$	0.000
66/64 G	E.B.M, at Mana .	$8 \cdot 5$		$+\quad 5.701$	+ 5.658	-0.043
55/84 G	E.B.M. at Abhanpur ..	$18 \cdot 4$.	+ 68.202	+ 68.188	-0.014
58/64 H	E.B.M. at Darba	23-2	"	+ 15.441	$+15.431$	-0.010
$47 / 64$ H	E.B.M. at Kurud	$35 \cdot 7$	"	$+10.144$	+ 10.134	-0.010
$32 / 84 \mathrm{H}$	Templent Diamtari	$48 \cdot 6$	"	+ 52.941	+ 52.822	-0.119
30/64 H	Step	$48 \cdot 7$	"	+ 48.820	+ 48.786	-0.034
$31 / 64$ H	E.B.M. at Dhamtari	$48 \cdot 7$	",	+ 47.785	+ 47.738	-0.049
27/64 H	Temple \quad.	$50 \cdot 1$	"	+ 57.055	+ 57.007	-0.048
28/64 H	Stone	$58 \cdot 2$	"	+ 63.310	+ 63.235	-0.075
21/64 H	Rock	$63 \cdot 3$	"	+ 78.584	+ 78.495	-0.089
13/64 H	E.B.M. at Grtasili	$94 \cdot 3$,	$+343.065$	+ 343.074	+0.009
11/64 H	Rook	98.5	"	$+441 \cdot 226$	+ $441 \cdot 363$	+0.137
10/64 H	Rook	103.9	,	+ 424.350	+ $424 \cdot 565$	+0.215
9/64 H	Rook	$105 \cdot 3$	"	+ 420.503	$+429 \cdot 710$	+0.207
7/64 H	E.B.M. at Sibāwa	107.5	"	+ 427.121	+ 427.329	+0.208
$8 / 64$ H	Stop	$107 \cdot 5$	",	+ 428.401	+ 428.624	+0.123
6/64 H	Rook	$109 \cdot 6$	"	+ 464.648	+ 464.920	+0.272
5/64 H	Rook	$120 \cdot 3$	"	$+813.673$	$+814 \cdot 184$	+0.511
4/64 H	Rook	122.7	"	+ 883.124	+ 863.648	+0.524
3/64 H	Rock	125.0	,	+1025.928	+1026.611	+0.583
$2 / 64 \mathrm{H}$	E.B.M. at Borai .	128.0	"	$+1089.553$	$+1090 \cdot 132$	+0.579
1/04 H	Rook	129.4	י.	$+1082 \cdot 687$	$+1083 \cdot 285$	+0.598
1/65 E	E.B.M. at Joringa	$140 \cdot 2$	",	$+1160 \cdot 507$	+1161-248	+0.741
28/65 I	Rook ${ }^{\text {a }}$.	143.1	"	+1197.817	$+1198.502$	+0.775
20/05 I	E.B.M. at Raigarh	$147 \cdot 6$	",	+1153.042	+1154.440	+0.798
25/65 I	Rook	147.0	"	+1163.304	+1154.098	+0.794
24/65 I	Rook	$148 \cdot 1$	"	$+1169.188$	+1160.986	$+0.800$
23/65 I	Rook	$150 \cdot 8$.,	+1138-377	$+1137 \cdot 173$	+0.798
22/65 I	E.B.M. at Bera	$157 \cdot 4$,"	+1010.835	+1017.590	+0.755
21/65 I	Rook - ..	158.9	-	+1024.632	$+1025 \cdot 391$	+0.759
20/65 I	Rook	$159 \cdot 8$,	+1085.479	$+1066 \cdot 238$	+0.757
10/65 I	Rock	$162 \cdot 4$	-	+1043.942	$+1044 \cdot 716$	+0.774
18/85 I	Rook	$163 \cdot 0$	"	+1017.844	$+1018.635$	+0.791
14/65 I	E.B.M. at Umarkot	$165 \cdot 0$	"	+ $994 \cdot 634$	+ $995 \cdot 376$	+0.742
13/65 I	Rook	$165 \cdot 7$	"	+ 994.424	+ 895.183	$+0.738$
12/85 I	Type ' C ' at Dodra	172.2	"	+ 931.464	+ 932.200	+0.736
11/65 I	E.B.M. at Bijāpur	$178 \cdot 2$	"	+ 959.402	+ 060.090	+0.697
10/65 I	E.B.M. at Dabgaon	188.0	"	+ 940.752	+ $941 \cdot 457$	+0.705

(Continued)

TABLE 3.-Old and new (1948-50) levelling from Raipur to Vizianagram-(concld.)

B.M. Nos.	Brief description	Distance from B.M. No. 173/54 G	Dite of original levelling	Observad height above $(+$) or below (-) B.M. No. 173/64 G		Dis. crepancy (NewOld)
				Old	New	
		Miles		feet	feel	feet
8/65 I	Rook . .	195.0	1894-97	$+918.484$	$+919 \cdot 224$	$+0.740$
0/65 I	E.B.M. at Pappadahandi	$197 \cdot 4$		+ 897.315	+ 898.012	+0.697
4/65 I	E.B.M. at Naurangapur	205.8	"	+ 871.484	+ $+872 \cdot 192$	+0.708
3/65 I	Pillar $\quad \because$	$205 \cdot 9$	"	$+866.083$	$+864 \cdot 824$	-0.230
2/65 I	E.B.M. at Borigumma	$218 \cdot 6$,	+ 040.395	+ 941.198	+0.803
1/65 I	Rock	$222 \cdot 2$	"	+ 014.484	$+915 \cdot 262$	+0.778
81/65 J	Rook	$294 \cdot 0$	"	+ 913.772	+ 914.534	+0.782
80/65 J	Rook	229.9	"	+ 948.270	+ 943.983	+0.713
79/65 J	Rock	231-4	"	$+950.871$	+ $951 \cdot 625$	+0.754
78/65 J	Grave stone ..	$232 \cdot 1$	"	+ 955.760	+ 956.445	+0.685
77/65 J	E.B.M. at Jeypore	$232 \cdot 6$	-	$+940 \cdot 807$	+ 941.569	+0.782
$73 / 65 \mathrm{~J}$	Rock	$238 \cdot 3$	"	$+1282.120$	+1283.023	+0.903
08/65 J	Rock	$240 \cdot 0$	"	$+1796.743$	+1797.900	+1.157
05/05 J	R-ack	241.5	"	+1955.754	$+1950.971$	+1.217
02/65 J	Rock	$243 \cdot 7$	"	+1935.841	+1937.047	+1.200
60/65 J	Rock	$244 \cdot 8$	"	+2038.972	+2040.222	+1.250
57/85 J	E.B.M. at Korāput	$246 \cdot 1$	-	+1904.543	+1905.734	+1.191
53/65 J	Rock . .	$249 \cdot 2$	"	+1834.226	$+1835 \cdot 387$	$+1 \cdot 101$
48/65 J	E.B.M. at Domriput	$253 \cdot 7$	"	+1840.094	+1842.133	$+1 \cdot 130$
$32 / 65 \mathrm{~J}$	E.B.M. at Doliamba	$203 \cdot 9$	",	+1984. 883	$+1985 \cdot 891$	$+1 \cdot 188$
$24 / 65 \mathrm{~J}$	Stone on bridge ..	$200 \cdot 2$	"	+1870.486	+1871.241	+0.775
15/65 J	E.B.M.at Pottanghi	$274 \cdot 5$	"	+2050.570	$+2060 \cdot 807$	+1.337
4/85 J	Rock ..	281.4	"	$+2059.189$	+2080.540	+1.360
3/65 J	Stone on bridge ..	$281 \cdot 4$,	$+2060.068$	+2000.970	+0.004
$101 / 05 \mathrm{~N}$	E.B.M. nt Sunki	287.8	"	$+1038.881$	+1039.938	$+1.057$
90/65 N	Rock	$289 \cdot 3$		+ 951.964	+ 952.055	+0.991
78/65 N	Stone on oulvert	$301 \cdot 3$.,	- 477.131	- $477 \cdot 155$	-0.024
70/65 N	Flooring	301.9	"	- 485.381	- 484.973	+0.408
74/65 N	E.B.M. at Saluru	$202 \cdot 3$		- 483.428	- $482 \cdot 743$	+0.685
73,05 N	Step	$302 \cdot 4$	-,	- 485.510	- 484.982	+0. 528
$51 / 65 \mathrm{~N}$	E.B.M. at Gajapatinagaram	324-8		- 777.273	- 776.063	+0.310
48/65 N	Rock	327.3	",	-773.521	$-773 \cdot 117$	+0.404
$46 / 65 \mathrm{~N}$	Stone on oulvert	$330 \cdot 6$	"	- 792.170	- 701-840	+0.330
22/65 N	Mile-stone	$338 \cdot 8$		- 773.100	- 771.051	$+1.149$
$23 / 85 \mathrm{~N}$	Pillar	$338 \cdot 5$		- 768.230	- 768.087	+0.163
24/65 N	Mile-stone	$339 \cdot 8$	"	- 791.808	- 792.548	-0.740
$25 / 85 \mathrm{~N}$	Mile-stone	$340 \cdot 8$		- 831.768	- 827.294	+4.472
$28 / 65 \mathrm{~N}$	Stone on bridge	341-3		- 834.412	- 834.205	+0.207
$28 / 65 \mathrm{~N}$	Stone on bridge ..	$342 \cdot 5$,	- 829.847	- 829.685	+0.252
$31 / 05 \mathrm{~N}$ $33 / 65 \mathrm{~N}$	Mile-stone Rock	$\begin{array}{r} 343.7 \\ 345 \cdot 5 \end{array}$	"	$\begin{aligned} & -770.946 \\ & -758.951 \end{aligned}$	$\begin{array}{r} 771 \cdot 303 \\ -758.689 \end{array}$	$\begin{array}{r} -0.357 \\ +0.362 \end{array}$

TABLE 3(a).-Old and new (1948-50) levelling from Vizianagram to Vizagapatam

B. M. Nos	Brief description	Distance from B.M. No. $231 / 65 \mathrm{G}$	Date of original levelling	Observed height above $(+$) or below (-) B.M. No. 237/65 G		Dis. orepancy (NemOld)
				Old	New	
		Miles		feel	feet	feet
237/65 N	S.B.M. at Viziana. gram	$0 \cdot 0$	1891-95	$0 \cdot 000$	$0 \cdot 000$	$0 \cdot 000$
18/65 N	Bridge $\quad .$.	$0 \cdot 9$		-22.853	- 22.838	$+0.015$
17/65 N	Bridge	1-9	1895-97	- $31 \cdot 942$	- 31.935	+0.007
10/65 N	Bridge	$2 \cdot 1$	"	- 36.266	$-36 \cdot 239$	+0.027
15/65 N	Bridge	$2 \cdot 8$	"	- 47.994	-47.961	+0.033
14/65 N	Bridge	$3 \cdot 5$	"	- 47.899	$-47 \cdot 962$	+0.037
$13 / 65 \mathrm{~N}$	Bridge	4-7	"	-78.081	- 78.027	+0.034
12/65 N	Bridge	$5 \cdot 8$	"	- 98.172	-98.147	$+0.025$
$10 / 85 \mathrm{~N}$	Bridge	$7 \cdot 8$	-	$-111 \cdot 339$	-111.255	+0.084
9/65 N	Bridge	$9 \cdot 0$	"	$-118 \cdot 576$	-115•121	+1.455
8/65 N	Bridge	$9 \cdot 2$	"	-109.507	-109.467	+0.040
$7 / 65 \mathrm{~N}$	Bridge	$10 \cdot 2$	"	- 90.179	-90.117	+0.062
6/65 N	Platform	10.9	"	-73.731	-73.650	$+0.075$
$3 / 65 \mathrm{~N}$	E.B.M. at Alamande R.S.	11.0	,	- 73.704	- 73.641	+0.083
2/65 N	Platform	11.0	"	- 73.727	- 73.888	$+0.059$
68/65 0	Bridge	11.6	"	-87.620	-87.540	+0.080
67/650	Bridge	$12 \cdot 2$	"	- 89.724	- 89.618	$+0 \cdot 105$
68/650	Bridge	12.9	"	- 68.754	-66.650	+0.104
65/65 0	Bridge	$15 \cdot 6$	"	+ 1.929	+ 2.052	+0.123
64/65 0	Bridge	16.9	"	+ 25.093	$+25.221$	+0.128
63/65 0	Bridge	$17 \cdot 8$	"	+ 34.254	+ 34.303	+0.144
62/05 0	Bridge	$10 \cdot 1$	"	+ 23.450	+ 23.620	$+0 \cdot 170$
80/65 0	Bridge	$20 \cdot 1$	",	+ 10.633	$\underline{+10.483}$	+0.170
59/65 0	Bridge	21.1	-	- 43.679	-43.301	$+0 \cdot 188$
58/65 0	E.B.M. at Kotts. volass	21.4	"	- $43 \cdot 683$	- $43 \cdot 498$	+0.185
57/65 0	Platform	21.5	"	- 42.765	- 42.611	+0.144
55/65 0	Bridge	$22 \cdot 1$	''	- 48.809	- $48 \cdot 833$	+0.176
54/65 0	Bridge	$22 \cdot 3$	"	-53.755	- 53.582	+0.173
62/65 0	Bridge	23.8	-	- 90.058	- 80.897	+0.101
51/650	Bridge	$25 \cdot 2$	"	-114.101	-113.983	+0.103
50/05 0	Bridge	$28 \cdot 5$	"	-128.629	-128.332	+0.297
49/65 0	Bridge	$27 \cdot 7$	"	-139.455	-139-297	+0.158
48/65 0	Bridge	28.1	"	$-143 \cdot 800$	-143.671	+0.210
47/650	Bridge	29.4	"	-152.411	-152.251	$+0.160$
$40 / 650$	Bridge	$20 \cdot 8$	"	-152.283	$-152 \cdot 142$	+0.141
44/65 0	Bridge	31.5	"	-159.577	-150-432	+0-146

TABLE 3(a).-Old and new (1948-50) levelling from Vizianagram to Vizagapatam-(concld.)

B.M. Nos.	Brief description	Distance from B.M. No. $237 / 65 \mathrm{~N}$	Date of original levelling	Observed Leight above (+) or below (-) B.M. No. 237/65 N		Dis- orepancy (NowOld)
				Old	New	
		Miles		feet	feet	feel
43/65 0	E.B.M. at Simhaohalam	$32 \cdot 7$	1895-97	-137-285	-137.008	+0.189
42/65 0	Platform	$32 \cdot 7$	"	-147.371	-147.210	+0.161
41/650	Platform	$32 \cdot 8$	",	$-147 \cdot 262$	-147.078	+0.184
40/05 0	Bridge	$33 \cdot 7$	"	$-101 \cdot 338$	$-161 \cdot 166$	+0.172
38/65 0	Bridge	$35 \cdot 9$	"	-160.075	-159.908	+0.167
37/65 0	Bridge	$37 \cdot 3$	"	-196.105	-196.044	$+0.151$
71/650	S.B.M, at Vizaga. patam	$40 \cdot 1$	1009-10	$-196 \cdot 292$	-198.074	$+0 \cdot 218$
75/65 0	Type 'C'at Vizegapatam	$40 \cdot 4$	"	-105.137	-194.918	+0.221
74/65 0	Flooring $\quad \cdots$	$40 \cdot 5$	",	-196.042	-195.843	$+0.199$
$\begin{aligned} & 73 / 650 \\ & 72 / 650 \end{aligned}$	Plinth Statue of Queen	$40 \cdot 8$	"	$-188 \cdot 380$	-188.201	+0.179
	patam	41.1	"	-198.615	-108.474	+0.141

18. River Crossing Detachment.-In season 1948-49, in the course of levelling from Diamond Harbour to Dublat and Howrah to Jellesore, Mr. B. P. Rundev had to cross the rivers Damodar, Rūpnārāyan, Rasulpur, Haldi, Bartala and Gahattaganj, which were $\frac{3}{8}, \frac{3}{8}, \frac{1}{4}, \frac{5}{8}, 1 \frac{5}{8}$ and $1 \frac{1}{2}$ miles in width respectively. Fortunately only the first four of these crossings occurred in the Primary level net ; the last two rivers which were unduly wide came in the branchline executed for the Port Commissioners of the Port of Calcutta.

The problem of transferring level heights across a wide river in the absence of bridges is beset with considerable difficulties and entails the use of special methods. Even rivers of a $\frac{1}{4}$ mile width can introduce great inacouracy unless special precautions are taken. Particularly important is the selection of a suitable site with due regard to length of crossing, asymmetry, height of water and so on. Other things being equal, the aim should be that the selected site gives the highest elevation of the ray above the water. But there are so many faotors involved that the balance of advantage can only be assessed after considerable experience.

Some experimental work was done on the Jumna river near Kalsi (about 35 miles away from Dehra Dūn) and muoh time and
thought was expended on the relative merits of the various methods. It was not considered advisable to entrust the work to the levellers who were running the lines. A separate detachment comprising of Messrs. A. K. Bhattacharjee and S. Vaikuntanathan and 12 khalāsīs was formed.

Details of the methods used and a critical resume of the results obteined will be given in the next Technical Report.
19. Calcutta Mint to King George's Dock and to Cossipore.-A report was received from the River Surveyor for the Port of Calcutta that standard bench-mark No. 985/79 B situated near No. 3 Gate, King George's Dock was found damaged and that it was necessary to reconnect it by levelling after it had been repaired. In connection with this work, opportunity was taken to establish two addiH.R.S.
tional bench-marks in the vicinity of $O \quad$ B.M. No. 80 which is B.M.
the bench-mark of reference of the tidal observatory at King George's Dock, so that a check could be maintained in future on its stability; also the standard bench-mark near the old Powerhouse of Cossipore was reconnected.

Messrs. A. K. Bhattacharjee and S. Vaikuntanathan took up this line both in fore and back directions on 14th February 1950 from the inscribed B.M. No. 359/79 B near Hastings Bridge, Kidderpore. The levelling was carried out in 2 -mile sections first from the above B.M. near Hastings Bridge to King George's Dock and then from the B.M. on Hastings Bridge to B.M. No. 353/79 B at Caloutta Mint. Due to heavy traffic in Calcutta area the progress of levelling was only between 2 and $2 \frac{1}{2}$ miles per day. The work was cornpleted on 24th February 1950.

Levelling was then started from S.B.M. at Calcutta Mint towards Cossipore. This line was done in 2 -mile sections, both in the fore and back directions and by the same two observers. The line wes closed on type M bench-mark near the old Power-house Cossipore which was, however, found to be in a damaged condition. Two new inscribed bench-marks have been established in its vicinity. The type M bench-mark at Cossipore Docks was found to be in a very good condition and was also connected on route.

The instrument used on both these lines was Zeiss Level MK III No. 5741.

Table 4 gives the difference between heights by old and new levellings of all old bench-marks connected by the new levelling. The discrepancies are small and indicate that the relative heights of bench-marks in the vicinity of Howrah have not altered.

TABLE 4.-Old and new levelling from Calcutta Mint to King George's Dock and to Cossipore
Calcutta Mint to Cossipore

353	Caloatts Mint, (Type B)	$0 \cdot 0$	1826-27	$0 \cdot 000$	0.000	$0 \cdot 000$
002*	Cosaipore, (Type M)	$3 \cdot 1$	"	+ 4.135	+ 4.107	-0.028
900*	Look coping stone	$2 \cdot 2$	"	-0.036	-0.032	+0.004

- Secondary levelling bench-marks.

20. Howrah to Purbasthali.-In 1929-30 a line of secondary levelling was carried out from Uttarpara to Kalna, at the request of the Commissioners for the Port of Calcutta to determine the heights of the special types of bench-marks built by them along the west bank of the Hooghly river.

These bench-marks consist of a stone monolith 10 inches square and 2 feet high, the upper 3 inches which project above groundlevel being dressed to the form of a frustum of a pyramid terminating in a square of 3 -inch side. The lower 1 foot 9 inches is built in a masonry platform 3 feet 4 inches square and 3 feet high. It is surrounded by a masonry wall $3 \frac{3}{3}$ feet square, 10 inches thick and I foot high. The inner enclosure is filled in with earth to a height of about 9 inches above the top surface of the monolith.

These special bench-marks were established to provide permanent height datums for the tide-gauge stations.

Recent levellings carried out from Howrah to Diamond Harbour and Dublat had revealed sinkages of local bench-marks which were quite significant in magnitude and the Port Commissioners considered that it would be worthwhile relevelling the line from Uttarpara to Kalna as well and further to extend it to Purbasthali.

Of late, it has been decided that Kidderpore New Dock Sill B.M. 359/79 B shall be the datum in terms of which all heights for the use of Commissioners for the Port of Calcutta will be reduced. It was, therefore, considered desirable that the revision levelling be carried out from Howrah instead of from Uttarpara and that the entire line should be observed to a higher precision than before.

The work was undertaken towards the end of February 1950 by Mr. S. Vaikuntanathen (Class II) using a C.T.S. Geodetic Level with parallel plate attachment and a pair of invar staves.

The levelling was commenced from stendard bench-mark No. 918/79 B at Howrah and closed on bench-mark No. 318/79 A (concrete block) at Purbasthali.

The first 8 miles were carried out by Mr. S. Vaikuntanathan himself both in the fore and back directions. Then he was joined by Mr. A. K. Bhattacharjee (Class II) and the next 16 miles were levelled in sections of 4 miles each, Mr. Bhattacharjee observing in the fore direction and Mr. Vaikuntanathan in the back direction. After that Mr. M. M. Sobti (Trig. Computer) replaced Mr. Vaikuntanathen.

Table 5 gives the list of bench-marks common to the new levelling and high precision levelling carried out in 1947-48 from Burdwan to Howrah. The differences are fairly amall and consistent.

Table 6 gives the comparative statement of the differences in heights of bench-marks on this line which are common to the 1929-30 levelling and the new levelling. Although some of the Port Commissioner's bench-marks have changed their height, the amount of the change is generally small.

TABLE 5.-Comparison of common bench-marks connected in 1947-48 and in 1950 on line Howrah to Purbasthali

$\begin{aligned} & \text { B.M. } \\ & \text { No. } \end{aligned}$	Desoription	Distanco from B.M. No. $359 / 78$ B	Observed height above (+) or below (-) B.M. No. 359/79 B at Kidderpore New Dock		Discrepanoy (NewOld)
			(Old) H.P. levelling 1947-48	(New) Revised levelling 1950	
Sheet 79 B		Miles	feel	feet	feel
359	Kidderpore New Dook	$0 \cdot 0$	0.000	$0 \cdot 000$	0.000
918	Howrah, (Type 'M')	6. 7	+ 2.972	+ 2.972	0.000
$\begin{aligned} & 870 \\ & (326) \end{aligned}$	Stone ..	$13 \cdot 1$	+ $7 \cdot 748$	+ 7.772	+0.024
447	Uttarpara, (Type 'A')	$13 \cdot 0$	+ $2 \cdot 909$	$+2.031$	+0.022
906(S)	Konnagar bathing ghàt ..	$17 \cdot 2$	$+1.020$	+ 1.083	+0.037
(330) $850(\mathrm{~S})$	Railway bridge ..	$23 \cdot 4$	+ $8 \cdot 298$	+ 8.367	+0.069
855(S)	Stone	23.5	+ 9.334	+ 9.401	+0.067
854 (S)	Coping	$23 \cdot 6$	+10.723	$+10 \cdot 789$	$+0.086$
853(S)	Coping	$23 \cdot 7$	$+10.570$	$+10 \cdot 640$	$+0.070$
334	Bridge \quad.	$24 \cdot 3$	+ 6.080	+ 6.156	$+0.078$
$\begin{aligned} & 914(S) \\ & (428) \end{aligned}$	Champadàni, (Type 'A')..	20.6	+ 6.504	+ 8.851	+0.057
421	Flooring	30.0	+ 9.991	+10.036	+1.045
420	Step	$30 \cdot 6$	+9.153	+ 9.208	+0.055
418	Stone	$30 \cdot 7$	+ $7 \cdot 741$	+ 7.797	+0.050
$\begin{aligned} & 927(\mathrm{~S}) \\ & (415) \end{aligned}$	Flooring	$35 \cdot 2$	+11.271	+11.311	+0.040
$\begin{aligned} & 928(\mathrm{~S}) \\ & (413) \end{aligned}$	Step ..	35-7	+13.841	+13.672	+0.031
410	Base of perdeatal	$38 \cdot 1$	+13.161	+13.205	+0.044
$\begin{aligned} & 92 \theta(\mathrm{~S}) \\ & (344) \end{aligned}$	Chineura, (Type 'B') ..	$30 \cdot 2$	$+11 \cdot 673$	+11.712	+0.030
352	Tribenighāt, (Type 'B')..	$40 \cdot 2$	+11.233	+11.181	-0.052

*From levelling of 1947-49.

TABLE 6.-Old and new levelling from Howrah to Purbasthali

B M. No.	Briof description	Distance from B.M. No. 350/70 B	Date of old levelling	Observed height above (+) or below (-) B.M. No. 359/79 B at Kidderpore Now Dock		Discrepanay (NewOld).
				Olỏ levelling (Secondary)	Revised levelling 1050	
Sheet 79 B		Miles		feet	feet	feet
359	Kidderpore New Dock	0.0	1881-83	0.000	0.000	0.000
447	Uttarpâra (Type A)	13.6	1913-17	+ 2.953^{*}	$+2.918$	-0.040
$\begin{aligned} & 900(\mathrm{~S}) \\ & (330) \end{aligned}$	Stone ..	17.2	1920-30	+ 1.071	$+1.050$	-0.021
907(S)	$\text { P.C.B.M. No. } 1 \text { (Type }$ M)	$18 \cdot 6$	"	+ 1.043	+ 0.919	-0.124
909(S)	P.C.B.M. No. 3 -	$20 \cdot 7$	",	+ $7 \cdot 118$	+ 7.098	$1-0.022$
910(S)	P.C.B.M. No. 4	$22 \cdot 1$	"	+ 5.933	$+5.822$	1-0.111
911(S)	P.C.B.M. No. 5 .	$23 \cdot 2$	"	+ 4.942	+ 4.962	+0.020
912(S)	P.C.B.M. No. 6 .	$28 \cdot 2$	"	+ 3.881	+ 3.872	-0.009
913(S)	P.C.B.M. No. 7	26.1	"	+ 1.863	+ 1.024	-0.039
014(S)	Chempfigni(Type 'A')	$28 \cdot 7$	"	+6.648	+6.638 +	-0.010
916(S)	P.C.B.M. No. 8 -	$27 \cdot 1$	"	$+8 \cdot 109$	+ 9.095	-0.014
017(S)	P.C.B.M. No. 9	$28 \cdot 0$	"	+ 7.918	+ 7.928	$+0.010$
918(S)	P.C.B.M. No. 10	$29 \cdot 4$	"	+ 3.144	+ 3.004	-0.140
019(S)	P C.B.M. No. 11 .	$30 \cdot 4$	"	+ 2.338	+ $2 \cdot 272$	-0.086
922(S)	Cement platform ..	31.5	"	+8.701	+8.703	+0.002
021(S)	Step	31.5	"	+ 3.420	+ 3.438	+0.018
020(S)	Step	$31 \cdot 5$	"	+ $5 \cdot 453$	$+5 \cdot 465$	+0.012
925(S)	Stone flooring .	$32 \cdot 1$	"	$+9.661$	$+9.644$	-0.007
924(S)	Stone flooring	$32 \cdot 2$	"	$+10.068$	+10.115	$+0.047$
923(S)	Stone	$32 \cdot 2$	"	$+10 \cdot 223$	$+10 \cdot 234$	+0.011
$027(S)$ $\text { (} 415 \text {) }$	Flooring	35.2	"	+11.291	+11.298	+0.007
414	Seat of gato	35.5	"	+13.343	$+13 \cdot 368$	+0.025
028(S)	Step	$35 \cdot 7$	"	+13.695	+13.659	-0.036
(413)	Base of pedestal ..	$30 \cdot 1$	"	+13.159	+13.102	+0.033
$\begin{aligned} & 929(S) \\ & 1.344) \end{aligned}$	Chinsura (Type'B')	$36 \cdot 2$	"	+11.691	+11.699	+0.008
411	Slab ..	30.5	"	+11.022	+11.036	+0.014
408	Culvert ..	$37 \cdot 9$	"	+11.022	+11.070	+0.048
${ }^{030(S)}$	Plinth .	38.4	"	+12.699	+12.714	$+0.015$
(407) 347	Coping	$38 \cdot 6$		+15.198	$+15 \cdot 248$	+0.048
$880(S)$	Step	38.9	"	+18.091	$+18 \cdot 130$	+0.039
(348)						
031(8)	Bȧndel (Type 'B'). .	$39 \cdot 8$	"	+ $7 \cdot 271$	+7.311	+0.040
(405)	P.C.B.M. No. 18	41.5		+14.928	+14.945	+0.017
034(S)	P.C.B.M. No. 19	$42 \cdot 7$	"	+2.354	+ 2.378	+0.025

- Velue obtained from old H.P. levelling.
(Condinued)

TABLE 6.-Old and new levelling from Howrah to Purbasthali-(concld.)

$\begin{aligned} & \text { B.M. } \\ & \text { No. } \end{aligned}$	Brief desoription	Distance from B M 359/79 B	Date of old levelling	Observed height about (+) or below (-) B.M. No 359/79 N at Kidderpore New Dock		Discre. panoy (New Old)
				Old levelling (Seoondary)	Revised levelling 1050	
$\begin{gathered} \text { Sheet } \\ 79 B \end{gathered}$		Miles		feet	feet	feet
350	Marble plaque ..	$43 \cdot 0$	1929-30	+18.000	$+18.913$	$+0.013$
$\theta 36(\mathrm{~S})$ (351)	Step ..	$44 \cdot 5$	"	+22.088	. $+22 \cdot 234$	+0.140
981(S)	Bridge	$45 \cdot 1$	"	+24.078	+24.017	-0.061
982(S)	Stone coping	$45 \cdot 6$	"	+19.282	+19.221	-0.081
035(S)	P.C.B.M. No. 20 .	$43 \cdot 5$	",	+15.349	$+15 \cdot 605$	$+0.250$
$\begin{gathered} 037(\mathrm{~S}) \\ (352) \end{gathered}$	Tribenighāt,(Type' \mathbf{B}^{\prime})	$48 \cdot 3$	"	+11.133	$+11.168$	$+0.035$
291(S)	Bridge	$40 \cdot 4$	"	+27.805	+27.712	-0.003
Sheet 79 A						
289(3)	P.C.B.M. No. 21	$50 \cdot 2$	"	+2.051	$+1.887$	-0.184
270(S)	P.C.B.M. No. 22 .	51.8	"	+14.888	+14.747	+0.059
200\%(S)	Bridge .. .	54. 6	"	+15.775	+15.647	-0.128
$\begin{gathered} 271(\mathrm{~S}) \\ (12) \end{gathered}$	Step	$55 \cdot 5$	"	+17.210	+17.263	+0.053
272(S)	Marble slab	55.5	"	+17.488	+17.483	+0.015
273(S)	P.C.B.M. No. 24 .	56.8	"	+ $3 \cdot 549$	+ 3.544	-0.005
274(S)	Marble slab	$57 \cdot 4$	"	+ $7 \cdot 128$	+ 7.095	-0.031
(17)	Balagarb, (Type 'B')	60.1		+ 7.352	+ 7.357	+0.005
299(S)	Stone	$62 \cdot 8$	"	$+17.286$	+17.084	-0.202
300(S)	Bridge	$64 \cdot 3$	"	+18.328	+18.237	-0.001
275(S)	P.C.B.M. No. 25	$64 \cdot 0$	"	+ 8.468	+6.504	+0.038
276(S)	P.C.B.M. No. 28	$87 \cdot 0$	"	+ 4.381	+ 4.324	-0.037
277(S)	P.C.B.M. No. 27	$70 \cdot 2$	"	+ 8.764	+8.857	-0.107
278(S)	Step	$75 \cdot 7$	"	$+20 \cdot 345$	+20.292	-0.053
279(S)	Pavement	78.4	"	+23.637	$+23.570$	-0.087
280(S)	Flooring, Kalns ..	77-7	"	+24.933	+24.973	+0.040
$\begin{gathered} 281(\mathrm{~S}) \\ (2.5) \end{gathered}$	Flooring ..	77-7	"	+25.870	+25.853	-0.023
308(S)	Culvert ..	81.8	*	+21.943	+21.819	-0.124
309(S)	Concrete blact	$82 \cdot 3$		+24.242	+24.120	-0.122
311(8)	Bridge . ${ }^{\text {a }}$	$84 \cdot 7$	"	+24.361	+24.352	-0.000
312(S)	Concrata blook	$88 \cdot 3$	"	+23.878	$\underline{+23.786}$	-0.112
315(B)	Stone ooping, Nabadwip R.S. . .	91.3	"	+23.941	+24.822	+0.881

21. Kosi Levelling.-Secondary levelling in the Kosi area of Bihär was carried out from Kishanganj in Purnea district to Harpur in Darbhanga district for the purpose of providing height control for Kosi Irrigation Project (See Chart VIII).

Detachment No. 3 consisting of Messers R. K. Gupta and J. Narasimhem as levellers with 13 khalāsis commenced worlk on the 15th October 1949 from B.M. No. 27/72 N at Kishanganj, and detachment No. 4 consisting of Messrs Avinash Chandra and T. K. Vishvanathan as levellers and 13 khalāsis commenced work from Pratāpganj on 17th October.

It was originally intended that No. 4 levelling detachment would commence work from Diwānganj T.S. (Latitude $26^{\circ} 16^{\prime}$ $49^{\prime \prime} \cdot 97$, longitude $86^{\circ} 54^{\prime} 21^{\prime \prime} \cdot 55$), a geodetic station of N.E. Longitudinal Series. The height of the original tower was 20 feet, but when it was visited by a levelling detachment in April 1934, the height was found to be 14 feet, the upper six feet having crumbled away and the mark-stone at a height of about 12 feet was connected by spirit-levelling.

When visited by No. 4 levelling detachment in 1949 the pillar was found to be only 5 feet high with a mark-stone, having a circle and dot cut on it on the top, which was connected by levelling. Apparently this was not the mark connected by levelling detachment in 1934. Hence the work was commenced from bench-mark No. G.T.S.
$59 / 72 J \quad \bigcirc$ on stone which was found on check-levelling to B.M.
heve maintained its height satisfactorily.
The two detachments effected a connection at Mahachanda on 14th December. Thereafter detachment No. 4 was transferred to Gandak area, and detachment No. 3 continued levelling towards Purnea. The work was finally closed on B.M. $136 \mathrm{PP} / 72 \mathrm{~J}$ at Harpur on 8th June 1950.

The levelling was carried out both in the fore and back directions in sections of 8 miles, each section being sub-divided into 4 subsections of 2 miles each. These sub-sections were levelled first by the fore-leveller in the morning and in the afternoon till the 8 -mile section was completed. The back leveller then followed the same procedure of observation for the 8 -mile section from the opposite direction, levelling in the afternoon the sections done in the morning by the fore leveller and vice versa. This was done to ensure that the two observers observed the same sections under different atmospheric conditions.

The routes generally available were cart-tracks, mule and footpathe which remained under knee-deep stagnant water and mire at many places till the beginning of November. The country is fairly plain and open but is full of water channels, a few of which only are bridged. Boats are not easily available. The only means of land transport is bullook carts obteinable either direotly through the
villagers or through the help of local officials. In the area ravaged by the Kosi river, there existed no road or track except foot-paths zigzagging through thick forests of high grass interspersed with unfordable water channels. No transport was available. Local cultivators were persuaded with great difficulty to act as labourers for shifting the camp from place to place.

Apart from a standard bench-mark at Purnea No. 348/72 0 and a primary protected bench-mark at Harpur T.S.-No. 136/72 J, a number of inscribed bench-marks on railways and road culverts were also connected. A few tower stations, viz., Masaldanga T.S., Mānikpur T.S. and Mohania T.S. of the North Maluncha Meridional Series were included in the levelling.

The whole area of this project is highly malarious. There were some cases of dysentery also.

As would appear from Chart VIII the levelling work in the Kosi area, described above comprises two closed circuits, viz :-
(i) Kishanganj - Raghopur - Srinagar - Sara Bathna -Kishanganj and
(ii) Raghopur - Srinagar - Madhipura - Tribeniganj - Maha-chanda- Raghopur,
and the two branch lines from Madhipura to Harpur T.S. and Tribeniganj to Diwānganj.
The first closed circuit yielded an error of -0.120 feet over a distance of 126 miles and the second +0.088 feet in 110 miles.

As usual the published height of old bench-marks at Kishanganj, Purnea and Harpur have been retained, and the new levelling has been adjusted on to these values. The corrections applied to the various sections are as follows:-

Purnea to Kishanganj (51 miles) +0.204 feet, Kishanganj to Sara Bathna (83 miles) - 0.051 feet, Srinagar to Harpur (110 miles) - 0.429 feet, Diwānganj to Raghopur (45 miles) + 0.145 feet and Madhipura to Tribeniganj (19 miles) - 0.029 feet.

In 1946-47 No. 9 Party, Eastern Circle, Survey of India carried out some tertiary levelling for providing height control for their surveys in the area and connected some bench-marks of the old high precision levelling line 15 l B. This line was run after the Bihär earthquake in 1934-36. Unfortunately no permanent bench-marks were established on this line and bench-marks connected by tertiary levelling were mostly on edges of wells. The heights of some of these bench-marks as derived by the tertiary levelling were significantly different from their heights by the 1934-36 levelling and oonsequently some of them were included in the new secondary levelling. The results are given in Table 7 and indicate that the levelling carried out by No. 9 Party correctly detected the changes in the heights of these bench-marks, which being on wells were liable to disturbance.

TABLE 7.-Showing old and new values of bench-marks on line 151 B

Topo. No. of Benchmark	Brief desoription		Distance from initial B.M.	Observed height above initial bench-marks			Discrepanoy		Orthometric Height			$\begin{aligned} & \text { Difference } \\ & (1949-50) \\ & \text { mimus } \\ & (1946-47) \end{aligned}$	
			$\begin{aligned} & \text { Old } \\ & \text { 1934-36 } \end{aligned}$	$\begin{gathered} \text { E.C. } \\ \text { 1946-47 } \end{gathered}$	$\begin{aligned} & \text { G.T.C. } \\ & \text { 1949-50 } \end{aligned}$	(E.C. minus Old) (5-4)	(G.T.C. minus E.C.) $(6-5)$	1934-38	1946-47	1949-50			
1		2		3	4	5	6	7	8	9	10	11	12
$\begin{aligned} & \text { 69/72 J } \\ & 58 / 72 \mathrm{~J} \end{aligned}$	Stone Well in Bhawanipur		$\begin{gathered} \text { Miles } \\ 0.0 \\ 0.5 \end{gathered}$	feet ${ }^{0.000}$ ($2 \cdot 290$	feet 0.000 +2.298	feet 0.000 +2.310	feet 0.000 +0.008	feet 0.000 +0.012	feet $203 \cdot 201$ $205 \cdot 402$	$\begin{gathered} \text { feet } \\ 203 \cdot 201 \\ 205-499 \end{gathered}$	$\begin{gathered} \text { feet } \\ 203.201 \\ 205.513 \end{gathered}$	$\begin{array}{r} \text { feet } \\ 0.000 \\ +0.014 \end{array}$	
97/72 N	Well in Madhabani Well in Jiwaohhpur Well in Jiwachhpar		$4 \cdot 1$	+3.108	+3.095	+ 3.113	-0.013	$+0.018$	$206 \cdot 330$	206-296	208.330	$+0.034$	
90/72 ${ }^{\text {N }}$			$4 \cdot 6$	+ $4 \cdot 882$	+ 4.890		+0.008		$208 \cdot 107$	$208 \cdot 091$			
95/72 N			$4 \cdot 7$	+4.328	+ 4.279	+4.309	-0.049	$+0.030$	$207 \cdot 554$	207-480	$207 \cdot 526$	$+0.046$	
04/72 N	Well in Belāganj .. Well in Beläganj .. Well in Nathpur Aräri ..		6.9	+ 0.200	+5.855		-0.351		209.445	209.055			
$83 / 72 \mathrm{~N}$ $87 / 72 \mathrm{~N}$			7.0	+ $5 \cdot 202$	$+5.035$	$+5.057$	-0.167	$+0.022$	$208 \cdot 441$	203.236	$203 \cdot 274$	+0.038	
8772 N			11.4	+ 7.036	+6.079	.	-0.057	.	210-299	210-179			
			$13 \cdot 3$	$+5.916$	+ 7.799	.	+ 1.883	.	209-199	$210 \cdot 999$	\cdots	.	
$83 / 72 \mathrm{~N}$	Well in Thelha Well in Gauria		14.6	+ 3.925	+ 3.922		-0.003		$207 \cdot 208$	207.122			
82/72 N			15.6	+2.951	+ $2 \cdot 844$		- 0-107		$206 \cdot 239$	206-044	.		
128/72 J	Stone	\cdots	$0 \cdot 0$	0.000	0.000	$0 \cdot 000$	0.000	0.000	\cdots		.		
127/72 J	Well	$\cdots \quad$.	0.4	-6.644	-7.055	$-7 \cdot 105$	-0.411	-0.050			\because		
126/72 J	Bridge	-. .-	1.0	-4.211	-4.148	..	$+0.083$..		.			
123/72 J	Bridge	$3 \cdot 7$	-4.775	-4.767	.	+ 0.008		

22. Gandak Levelling.-The secondary levelling in the Gandak project area of Bihār (see Chart IX) was carried out by four detachments to meet the requirements of the Gandak Irrigation Project. Detachment No. 4 consisted of two survevors Messrs. Avinash Chandra and T. K. Vishvenathan and 13 khalāsis, and detachment No. 5 consisted of two surveyors-Messrs. S. Muthukrishnan and D. V. Verma and 13 khalāsis. The other two detach. ments were provided by No. 9 Party of Castern Circle.
(a) Line I-Padrauna-Muzaffarpur.-After closing the line Diwānganj-Kishanganj in Kosi area on type B bench-mark at Mahachanda on the 30th November 1949, detachment No. 4 moved over to Gandak area and after doing some check-levelling near Muzaffarpur commenced work from S.B.M. 221 PP/72 F on the 9th December 1949.

The instruments used were Level No. 17783 Wild, Model No. 2 and a pair of Committee pattern staves Nos. 038 A and 038 B .

The system of levelling followed was the same as for Kosi levelling described on page 35.

The route followed was the motor road from Muzaffarpur to Hājīpur, thence after crossing the river Gandak over O.T. Railway bridge across to Sonpur along the motor road to Raghunathpur via Chäpra and Gangapur Siswan where junction was effected with detachment No. 5 on type 'B' bench-mark on the 18th February 1950.

Type 'B' bench-marks were established at Karhani, Bhagwānpur, Sarai, Sonpur, Nayagaon, Dighwāra, Sāntha, Mānjhi Ghāt, Gangapur Siswan and Raghunathpur and Type 'M' bench-marks at Hājipur and Chāpra. These were constructed according to Survey of India specifications under the directions of Superintending Engineer, Gandak Circle, Patna.

Detachment No. 5 started check-levelling at Bagaha on 24th October 1949, connecting bench-marks Nos 52, 139, 140 PP, 141 and $142 / 72 \mathrm{~A}$ and the line continued up to east bank of river Gandak. But since the railway bridge over Gandak at this place was found washed away, the line had to be closed on an inscribed bench-mark on east bank, and the line started afresh from Chhitani Ghāt R.S. on west bank of Gandak. The bench-marks on the two banks could not be connected as the personnel available had no experience of levelling across rivers. It was, therefore, decided to continue the line to Padrauna where check-levelling was done again connecting bench-marks Nos. 88 to $92,95,96 / 63 \mathrm{~N}$ and 152/72 B. The results of check-levelling are tabulated in Table 12.

The results show that bench-marks Nos. 89, 91, 92, 95 and $98 / 63 \mathrm{~N}$ are in order and bench-marks Nos. 88, $90 / 63 \mathrm{~N}$ and 152/72 B have been disturbed. It was, therefore. decided to reduce the heights in terms of bench-mark No. 89/63 N.

The instrument used was Zeiss Level No. 5733 Model No. III with Invar staves Nos. 121 and 122.

The line was continued from Padrauna to Raghunathpur along the motor road via Turkapatti, Katea, Bhore, Mairwa and Darauli effecting junction with detachment No. 4 at Raghunathpur type ' B ' bench-mark.

Type ' B' bench-marks were established at Turkapatti, Bhägipatti Jhil, Katea, Chau Mukha, Bhore, Sirsia, Mairwa and Raghunathpur and type ' M ' bench-marks at Padrauna and Darauli. These were also constructed under the direction of the Superintending Engineor, Gandak Circle, Patna, according to Survey of India specifications.

The discrepancy between the heights of type ' B ' benchmark at Raghunathpur obtained independently by the two detachments was $0 \cdot 632$ feet.

The total distance from Padrauna to Muzaffarpur is about 200 miles and for purposes of computations and adjustment of error this portion of the lins has been treated as a single continuous line from Padrauna to Muzaffarpur and the portion Padrauna to Chhitauni Ghät R.S. as a branch line. The closing error of 0.611 feet, which is the excess of reducen height of S.B.M. No. $221 \mathrm{PP} / 72$ F over its published height has been distributed proportionate to distance.

For transport detachment No. 4 had to engage bullock carts and detachment No. 5 had the use of a jeep, which the Superintending Engineer, Gandak Circle Patna, very lindly placed at their disposal. Food stuff and vegetables, ete., could be procured without much difficulty in the area.

The health of the detachment was good throughout but for occasional cases of malaria. Few sporadic cases of cholera, plague and small pox were reported in the area and later these broke out in an epidemic form in some localities. All the precautionery measures for appropriate inoculations of the personnel were taken in good time.
(b) Line II-Muzuffarpur to Häjipur.-After effecting junction at Raghunathpur on Gandak priority I line on 18th February 1950, detachments Nos. 4 and 5 moved over to priority II line to meet the requirements of the Gandak Irrigation Project.

Detachment No. 4 commenced work from the standard benchmark at Muzaffarpur on 25th February 1050, the stability of which having been already ensured by check-levelling while working on priority I line.

The route followed was the motor road from Muzaffarpur to Pusa up to about the 12 th mile stone and then southwards along the ourt-track to Shalkra-Faridpur, thence along the road via TājpurSamastipur and Narhan R.S. to Dalsing Sarai, where junotion was effected with detachment No. 5 at type ' B ' bench-mark on the 14th April 1950.

Since the type ' B ' benoh-marks at Tājpur end Narban and type ' M ' at Samestipur had not been constructed when the detaohment
passed working through these places, the detachment had to proceed with the work leaving three inscribed bench-marks at each of theso places. After effecting junction with cletachment No. 5 at Dalsing Sarai each one of these permanent bench-marks was connected to the group of the three inscribed bench-marks of the main-line.

These permanent bench-marks were constructed according to Survey of India specification under the direction of the Superintending Engineer, Gandak Circle, Patna.

Detachment No. 5 commenced work on the line from Type ' M ' bench-mark at Hājipur on the 28th February 1950 and worling along unmetalled road from Hājīpur to Dalsing Sarai via Biddupur, Mehnār, Baghra, Mohiuddinnagar and Bāxidpur effected junction with detachment No. 4 on the 14th April 1950 at type 'B' benchmark at Dalsing Sarai.

Type ' B ' bench-marks were established at Biddupur, Mehnār, Baghra, Baxidpur and Dalsing Sarai and type ' M ' bench-mark at Mohiuddinnagar.

After completing the line upto Dalsing Sarai, detachment No. 5 moved over to Ramkola to Commence work on line from Captainganj to Tribeni Ghāt.

For transport, bullock carts were used by detachment No. 4 and the jeep with its trailer by detachment No. 5.

Health of the detachments remained satisfactory.
The closed circuit taken from standard bench-mark $221 \mathrm{PP} / 72 \mathrm{~F}$ at Muzaffarpur to type ' M ' bench-marle at Hājīpur and from Hājīpur to Muzaffarpur via Dalsing Sarai and Samastipur yielded an error of 0.069 feet in a distance of about 152 miles and this has been distributed proportionate to the distance.

Captainganj to Tribeni Ghāt:-After effecting connection with detachment No. 4 at Dalsing Sarai detachment No. 5 proceeded to Captainganj and carried out further check-levelling on the old line 151 B. Connection to the new type ' M ' bench-mark was from B.M. No. $102 / 63 \mathrm{~N}$ and levelling was carried forward to Tribeni Ghät.

From Senduria to Nichlaul levelling was carried out exactly on the alignment of the canal and permanent marks such as culverts, wells have been chosen for bench-marks. From Nichlaul levelling was done cross country and only trees were available for making bench-marks. The levelling closed on type ' M ' bench-mark at Tribeni Ghāt on 10th June 1950.

For transport, the detachment had to depend solely on bullockcarts. In Nepal, the non-availability of carts due to harvest time, and the non-existence of any roads except cart-tracks which were rendered unsafe for the movement of carts due to setting in of monsoon made camp shifting really difficult.

The health of the detaohment was fairly good during the period.

(c) Line III.-A line of levels from Dighwāra to Bhägipatti along the south-west bank of the Gandak was run by two detachments of 11 Party.

The first detachnient commenced work on 18th December 1950 from the reference pillar of the new Type ' B ' bench-mark at Bhägipatti on the Padrauna-Muzaffarpur's secondary levelling line described above. No check-levelling was carried out at Bhägipatti as the bench-mark had only recently been built and could not have heen disturbed.

The instruments used were Watt pattern level No. 402 (Cooke Troughton \& Simms, Ltd.) and tertiary levels No. C.T.S. 34307 and Cormmittee pattern wooden staves Nos. 06 B and 040 B. The system of levelling followed was simultaneous double levelling, the discrepancy between the two levellers at any station being limited to 0.007 feet. The maximum permissible discrepanoy between the middle wire reading and the mean of the three wire readings was 0.003 feet. The length of the shot was kept within 7 chains. The route followed was the unmetalled road from Bhägipatti to Jalalpur R.S., thence to Gopālganj via Sasamusa R.S. and then on the unmetalled road along the south-west bank of the Gandak to Sonwalia village where junction was effecter with the second detachment on l2th January 1950.

The second detachment commenced work from type 'B' bench-mark at Dighwāra on the Padrauna-Muzaffarpur secondary levelling line on 10th December 1949. No check-levelling was carried out as the bench-mark had only recently been built. Moreover a branch-line was run from Dighwara to connect the new Type 'B' bench-mark at Nayagaon on the Padrauna-Muzaffarpur secondary levelling line. Working along the unmetalled road along the west bank of the Gandak via Amnaur the detachment effected junction with the detachment working from Bhägipatti on 12th January 1950 at Sonwalia village.

The instruments used were tertiary levels Nos. C.T.S. 34236 and 34252 and the staves were of Committee pattern, viz., Nos. 16 A and 16 B .

The line yielded a closing error of-0.705 over a distance of 107 miles and this has been distributed proportionate to distance. The probable accidental error computed from the formule $\theta-8745$ works ausua out to 0.0042 feet per mile.

In addition to the above lines a secondary levelling line from Hājipur to Patjirwa along the NE. bank of the Gandak is contemplated to be run by Eastern Circle in 1950-51.
23. Height of Standard Bench-mark at Purnea.-The seoondary levelling carried out in the Kosi and Gandak areas described in paras 21 and 22 above, and the old levelling of 1934-36 between Begaha and Dinājpur have been shown on Chart \mathbf{X}.

In the discussion of the results of the levelling carried out in 1934-36 after the Bihar earthquake in Geodetic Report, 1936,

Chapter VIII, it is concluded that the heights of Bagaha and Dinājpur were not seriously disturbed by the 1934 earthquake but that in between permanent bench-marks had undergone sorious changes of height as shown in the table below :-

TABLE 8.-Old and new levelling from Bagaha to Purnea

Benoh-marke of the original levellung that were connected during the revislonary operationa				Dlfference between orthometric helght, above (+) or below (-) the atarting bench-mark			
No.	$\left\lvert\, \begin{aligned} & \text { Degree } \\ & \text { oheet } \end{aligned}\right.$	Description		$\begin{gathered} \text { Date } \\ \text { of } \\ \text { orignal } \\ \text { levellng } \end{gathered}$	From published heiglats	From revision 1934	
			miles		feet	feet	feet
Revision of part of line 71(Gorakhpur-Purnea)							
51	72 A	E.B.M. at Bagahn R.S.	$0 \cdot 0$	1920-21	$0 \cdot 000$	$0 \cdot 000$	$0 \cdot 000$
5		Bukwa T.S. \quad.	13.9	1870-72	- 0.089	- 6.269	-0.180
4	72 B	Patjirwa T.S.	$4 \pm .6$		- 30.204	- 30.713	-0.419
25	"	S.B.M., Motihari	$75 \cdot 0$	1900-10	- 72.876	- 74.509	-1.633
18		Rūp̈di	79.2	1870-72	$-77 \cdot 105$	- 81.692	-4.587
8	72 F	Harpur T.S.	$131 \cdot 5$		-114.478	-115.205	-0.727
52	"	S.B.M. Muzaffarpur	128.0	1909-10	$-115 \cdot 589$	-116.301	-0.712
14	"	Sàwajpur T.S. ..	138.0	1870-72	$-115 \cdot 500$	$-117 \cdot 848$	-2.348
16	"	Paladpur T.S.	$134 \cdot 3$	1870 7	$-116 \cdot 776$	$-118 \cdot 644$	-1.868
246 (56)	"	E.B.M. st Darbhanga R.S.	$168 \cdot 3$	1920-21	-135.508	-137.436	-1.928
347 (49)		Chotsipati T.S. \quad.	$170 \cdot 5$	1870-72	$-135 \cdot 978$	$-137 \cdot 158$	-1.178
136 (11)	72 J	Harpur T.S.	$180 \cdot 2$,	-128.635	-130.620	-1.985
344(168)	72 Q	E.B.M. at Purnea R.S.	$319 \cdot 6$	1809-1000	-165.076	-165.325	-0.24日
348(177)	"	S.B.M. at Purnea	$323 \cdot 0$	1930-31	-169.378	-189.911	-0. 533

A direct connection of Bagaha and Purnea by the new secondary levelling which followed a different route from the 1934-36 one, would have afforded a very valuable check on the old levelling but this was not possible. The iron bridge over the Gandak near Bagaha was found to have been washed away, so the levelling from Muzaffarpur could only be taken to the south bank of the river opposite Bagaha.

On the eastern end levelling from Purnea could be carried only up to Harpur after the detachment had been in the field for about 9 months and due to bad weather conditions it became impossible to take any further observations. Consequently Harpur could not be connected to Muzaffarpur.

The following table gives the observed difference of height between Padrauna and Muzaffarpur and that between Harpur and Purnea by the new and old levellings :-

From	To	Distance	Observed difference of height			Differenoe	
			$\begin{aligned} & \mathrm{By} \\ & \text { 1870-72 } \\ & \text { and } \\ & \text { 1930-31 } \\ & \text { levelling } \end{aligned}$	$\begin{gathered} \text { By } \\ \text { 1934-36 } \\ \text { levelling } \end{gathered}$	$\begin{gathered} \text { By } \\ \text { 1949-50 } \\ \text { Sec. } \\ \text { levelling } \end{gathered}$	(8-4)	($8-5$)
1	2	3	4	5	6	7	8
		miles	feet	feet	feel	feet	feet
B.M. No. $89 / 63 \mathrm{~N}$ at Padraune	B.M. No. $221 \mathrm{Pr} / 72 \mathrm{~F}$ at Muzeffarpur	$197 \cdot 25$	\cdots	-105.494	$-105 \cdot 319$.	+0.175
B.M. No. $348 \mathrm{PP} / 720$ at Purnea	B.M. No. $136 \mathrm{Pr} / 72 \mathrm{~J}$ at Harpur	$131 \cdot 01$	+40.693	$+40.098$	$+39 \cdot 725$	-0.868	-0.373

The new levelling confirms the difference of height between Padrauna and Muzaffarpur as obtained by the 1934-36 levelling, but indicates a rise in the height of Purnea relative to Harpur T.S. As a results of the 1934-36 levelling corrections of $-0.712,-1.928$ and -0.533 feet were applied to the pre-earthquake heights of S.B.M. Muzaffarpur, Harpur T.S. and S.B.M. Purnea. The new levelling shows that these corrections were justified although the magnitude of the correction applied to the height of S.B.M. Purnea was possibly on the lower side. This, however, cannot be regarded as conclusive and for adjustment of the present secondary levelling the post earthquake height of the standard bench-mark at Purnea has been accepted. The check-levelling (see Table 12) shows that inscribed bench-marks at these places have maintained thoir heights relative to the permanent bench-marks since 1936.
24. Narbada Levelling.-Secondary levelling in Madhya Pradesh was carried out to provide height control for the Upper and Lower Narbada Division of C.W.I.N.C. in connection with different irrigation projects, the work being extra departmental and paidfor.

Lines from Bir (G.I.P. Rly.) to villege Chikdaria and from Timurni (G.I.P. Rly.) to Makrai were run for the Lower Narbada Division, and line from Hoshangäbād to Jubbulpore was run for the Upper Narbada Division.

One line of about 26 miles starting from Jubbulpore was run to connect Ballār H.S. to determine the error in the trigonometrioal height of this station.

The levelling was caried out by a detachment under Mr. S. N. Nandi (Surveyor), assisted by Mr. M. L. Sahdev (Surveyor) and 13 khalisisis which left Dehra Dūn on the l5th October 1949 and reached Bir on the 17 th October. The work was started on the 19th October from B.M. 146/55 B and closed on a new type ' B ' bench-mark at Chikdaria on 8th November 1949.

On the 11 th November 1949 the detachment took up the levelling of the other branch-line from Timırni to Makrai. The work was commenced from B.M. No. 196;55 F at Timurni and closed on a new type ' M ' bench-mark at Makrai.

The detachment then moved to Hoshangābād and started work there on 13th December 1949 from B.M. 87 PP/55 F and closed on type 'M'B.M. No. 104/55 M at Jubbulpore on 3rd June 1950. After doing some check-levelling at Jubbulpore, the levelling was carried to Ballār H.S. This line was completed on 29th June 1950. After doing further check-levelling at Jubbulpore the detachinent returned to Dehre, Dūn on the 11th July 1950.

Wild Level No. 21201, Model II and Committee pattern wooden steves Nos. 020 A and 020 B were used.

The system of work was the same as for the Kosi and Gandak area secondary levelling (see paras 21 and 22).

Route followed on the lines from Bir to Chilkdaria and Timurnj to Makrai was mainly cart-tracks and foot-paths. The country was on the whole undulating and very often the route lay through jungle and long grass. Several small streams had also to be crossed on the way. Means of transport throughout were bullock-carts.

The route followed from Hoshangābād to Jubbulpore was along the old Bombay road which was in a motorable condition up to Narsinghpur but from there onwards the road was in a very bad condition with bridges and culverts in many cases broken and rivers Narbada, Dudhi and others being unbridged. The country was non the whole plain.

The route followed from Jubbulpore to Ballār H.S. was along the metalled road leading to Mandla. The major portion of this line was through hills. Means of transport were bullock-carts up to the middle of January 1950 after which the detachment secured a motor vehicle with driver from the Executive Engineer, Upper Narbada Division C.W.I.N.C., Jubbulpore.

Connections were made to Baodiya H.S. and Anjania Khurd H.S. in sheet 55 B and to Ballār H.S. in sheet 64 B . In addition to connecting the various Type ' B ' and ' M ' bench-marks which had been constructed by the C.W.I.N.C., the detachment inscribed a number of bench-marks on railway or road culverts, bridges and other suitable places. Connection was also made to B.M. No. $258 / 55^{5}$ F at railway bridge over Thwa River of the levelling line carried out in 1948-49.

The area is highly malarious and the members of the detachment including the levellers were often laid down with fever. In the first two or three months the lihalinsis were constantly attacked by malaria and at one time the whole of the squad was laid down. The progress of the detachment suffered much on account of this, as the local coolies were not able to hold the staves or run the chain properly. Immediate relief could not be given to the sick persons as the detachment was poorly equipped with medicines. Sick persons were, however, promptly sent to (Xovernment dispensaries wherever they were available.

The closing error of levelling at Jubbulpore (S.B.M. 104/55 M) with the starting datum at Hoshangābād (B.M. 87 PP/55 F) was -0.262 feet in a distance of 168 railes. For the sake of adjustment the main-line has been broken up into two parts, viz., Hoshangābād-Semri-Itārsi and Somri-Jubbulpore.

A small circuit composed partly of this year's and partly last year's serondary levelling (Hoshangābād-Semri-Itārsi-Hoshang$\bar{a} b \bar{a} d)$ is also formed. This has a closing error of -0.111 feet in 51 miles. This has been adjusted first taking the portion Hoshang-ābād-Itārsi as unchanged. An error of -0.3 feet in 142 miles has then been adjusted in the main-line from Semri to Jubbulpore.
25. Height Control for Bargi Dam Project.-In order to provide planimetric and height control for the Bargi Dam Project surveys No. 1 Party carried out some triangulation in 1948-49. During the course of this triangulation heights of a number of stations were refixed. The new heights showed considerable differences from their old values. The difference, (new-old), ranged from +16 to +37 feet. Both the new and the old heights were examined. It was found that whereas the new heights by No. l Party were closely in terms of spirit-levelled values, the computation of old heights (of 1873-74 and 1917-18) were faulty. On recomputation of the old heights the differences between the new and old values were considerably reduced to an average of about 13 feet. It was estimated that the recomputed old heights required to be increased by about 6 feet in order to bring them into terms of spirit-levelled values, thus reducing the discrepancy to 7 feet.

To confirm that the old heights which were in torms of the G.T. stations Kotāli H.S., Banori H.S., Kūsam Bera H.S. and Bellār H.S. did require an increase of about 6 foet, a line of levelling was run from Jubbulpore to Ballär H.S. The height of Ballär H.S. by spirit-levelling has been found to be greater then its trigonometrical value by 5 feet. The average discrepancy between the old and new heights is now 8 feet, a greater part of which is to be attributed to the old heights. The results are tabulated below.

Sheet	Station			$\underset{\text { height }}{\text { Old }}$	Obberver and date of old triangulation			Dlscrepancy	
								$\begin{gathered} \text { New } \\ \text { minus } \\ \text { old } \\ (3-4) \end{gathered}$	$\begin{gathered} \text { New } \\ \text { minud } \\ \text { old } \\ (3-7) \end{gathered}$
1	2		3	4	5	6	7	8	9
			feet	feet		feet	feet	feet	feet
64 B/1	Brkra	h.s.	1830	1814	D. Khadilkar, 1917-18	1818	1823	16	7
"	Nauri	h.s.	1824	1808	"	1811	1816	16	8
"	Koduari	h.s.	1630	1614	,	1617	1622	16	8
"	Maldongri	h.s.	1809	1793	"	1798	1801	16	8
84B/6	Joratorin	h.s.	1693	1677	"	1679	1684	16	9
65 N/13	Dudhia	h.s.	1724	1691	"	1713	1718	33	6
"	Chaurn	h.s.	1703	1666	G. C. Depree 1873-74	1689	1694	37	θ
"	Sidh No. 2	h.s.	1530	1500	",	1517	1522	30	8

26. Kandla Levelling.-Secondary levelling in Kutch was carried out for the following purposes :-
(i) To provide height control for tertiary levelling and triangulation carried out in the area by units of the Southern Circle, Survey of India,
(ii) To provide bench-marks of reference to the tide-gauges,
and (iii) To provide height datums for the hydrographic Survey of Lakes for taking down water by pipes to Kandla port.

The entire job was carried out at the request of the Developmenl Cornmissioner for the Port of Kandla and was paid for by him.

A detachment under Mr. C. L. Puri (Surveyor) assisted by a computer and 13 khakīsīs left Dehra Dūn on the 10th October 1949. After a month the computer fell sick and was replaced by Mr. S. K. Bose (Surveyor).

The portion of old level line No. 104 (Viramgām to Tatta) of 1874 from B:M. No. 54/41 I (type C) at Lunwa village to B.M. No. 64/41 I (type B) at Anjär was first revised. The work was commenced on 20th October 1949 and after connecting old benchmarks Nos. 58, 59, 60, 61, 62, 63 of sheet 41 I it was completed on 30th October 1949. The results are given in Table 9 and show that except for bench-mark No. 58/41 I the heights of the rest of the bench-marks did not undergo any change.

TABLE 9.-Old and new levelling between Lunwa and Anjär

No. of Benchmark	Bricf deycription	Height by old levelling published 1874	Unadjusted orthometrio height by new levelling 1949-50	Diff. Old minus new	Height accepted	Remarks
		feet	feet	feet	feet	
54/41 I	On rook (Type C) at Lunws	141.110		.		Intact.
68/41 I	G.T.S. (Type B) at $\leftarrow \square \rightarrow \text { Pasura }$	77-278	76.931	+0.345	70.929	Disturbed.
	A.D. 1874					
59/41 I	On plinth of Satti	93-806	93.827	-0.021	93-808	Intact.
60/41 I	On culvert	98.599	98.693	-0.034	98.599	"
61/41 I	Plinth of temple	111.098	111.135	-0.037	111-008	",
62/41 I	Parapet of well	$130 \cdot 378$	$130 \cdot 415$	-0.037	$130 \cdot 378$,
63/41 I	On culvert	139.988	140.024	-0.036	139-988	"
64/41 I	$\begin{aligned} & \text { G.T.S. ('Type B) at } \\ & \text { ↔- Anjēr } \\ & \text { A.D. } 1874 \end{aligned}$	204•671	204•676	-0.005	204-671	-
69/41 E	Type ' B ' at Chānd. roda	204-980	$205 \cdot 010$	-0.030	204•980	Intast.
$\left\|\begin{array}{ll} 86 / 41 & \mathrm{E} \\ 68 / 41 \mathrm{E} \end{array}\right\|$	On rook G.T.S. On rack	$\begin{aligned} & 195 \cdot 687 \\ & 194 \cdot 604 \end{aligned}$	194.604	$0 \cdot 000$	$194 \cdot 684$	Intaot.
	$\begin{aligned} & \text { A.D. } 1874 \\ & \text { A.D } \end{aligned}$		$194 \cdot 604$		104-604	Inmat.
64/41 E	On rook	$229 \cdot 743$	220.738	+0.006	$229 \cdot 743$	"
66/41 E $57 / 41 \mathrm{E}$	On rock at Ratnāl .. On rook	$\begin{aligned} & 392 \cdot 008 \\ & 382.030 \end{aligned}$	382.011	+0.019	382.030	Intant.

Levelling was then started from B.M. No. 8 at Bhimēsar on lst November 1949 and was closed on B.M. No. 64/41 I at Anjār on 3rd Decernber 1949. During the course of this levelling trigonometrical stations Rohar Miti s. Shinaya No. 1 H.S., Shinaya No. 2 h.s., Antarjāl NE. s. and Naransar s. were connected. A small branch-line was run to connect Anjär Fort s.

After that a line was started from B.M. No. 22 at Antarjāl on 4th Deaember 1949 and was closed on B.M. No. 15 at Galpadar on 20th December 1949. The trigonometrical station conneated by this line were Barapur Tower s., Kirnia s. and Khāri Rohar S.

Again another line was commenced from B.M. No. 49 near Khāri Rohar on llth January 1950 and was closed on a B.M. at Khori creek near the Khori creek tide-pole on 26th January 1050. Three 'type B' reference bench-marks for tide-gauges at Kandle were also connected by this line.

Before closing the work some more levelling was earried out to provide height datums for hydrographio survey of the lakes.

For this purpose one line was started from Anjār on 20th December 1949 from B.M. No. 64/41 I and was closed on 10th January 1950 on B.M. No. 64/41 I and another line was started from B.M. No. 64;41 I on 27th January 1950 and was closed on B.M. No. $107 \mathrm{PP} / 41 \mathrm{E}$ on 10th March 1950.

Some 'type B' and rock-cut old bench-marks were connected in this line.

Table 10 give the heights of all the triangulation stations and other permanent bench-marks connected during the course of the levelling described above.

TABLE 10.-Heights of triangulation stations and other permanent marks in Kutch connected by secondary levelling in 1949-50

The Instrument used was Zeiss Level No. 1633 Model II which was later replaced by level No. SO34318 (due to the axis of the former becoming loose and Invar staves No. 31, 32.

The levelling was carried out in fore and back lirections by 4 -mile sections as for Kosi levelling described in para 21. Strong breeze generally interfered with the work.

The area of levelling was heterogeneous mixture of topographical details being marshy, sandy, hilly, plain and undulating places.

For transport, bullock-carts were used except where railways could be made use of for shifting camps.

Difficulty was experienced in connecting the tide-poles. Several creeks had to be crossed and the line had to be taken through the swampy rann. The work, in marshy areas could only be done at low tide and connections to tide-pole at neap tide periods, which resulted in some loss of time.

Health of the detachment was not good. One of the officers suffered from the attack of typhoid for about a month towards the end of the field.
27. Levelling in Navi Wat and Navlakhi Areas.-Secondary levelling in these areas was carried out (i) to establish reference bench-marks for tide-gauges and (ii) for connecting the zero of the tide-poles fixed in Navi Wat and Navlakhi.

A detachment consisting of Mr. G. S. Tonk (Surveyor), one computer and 10 khalāsīs reached Vāndhia on 5th March 1950 and after doing check-levelling between Vāndhia and Shikārpur commenced work from B.M. 43/41 I at Vāndhia. The levelling closed on a new bench-mark built at Navi Wat consisting of a 2 -inch thick stone slab, 12 inches by 8 inches, embedded on top of a masonry pillar 3 feet square and $1 \frac{1}{2}$ feet high. The whole rests on a cement concrete foundation 2 feet deep.

After completing the branch-line to Navi Wat, check-levelling was again carried out between Vāndhia and Amliāra as the checklevelling to Shikārpur was not quite satisfactory.

The orthometrio heights of the bench-mark of reference and of the zero of the tide-pole at Navi Wat are as follows :-

1. G.T.S.

B.M. embedded at Navi Wat,	+10.163 feet
2. Zero of the tide-pole at Navi Wat	-14.011 ,"

Mr. G. S. Tonk then returned to Dehra Dūn. He was replaced by Mr. S. K. Bose (Surveyor). The detachment then proceeded to Navlakhi area.

At Nevlakhi 3 'type B' bench-marks had been constructed as bench-marks of reference for the tide-pole there. Connections were effected to these as well as to an old tide-pole atteohed to passenger jetty after cheok-levelling from Dudhie to Jhijhura.

The heights of these bench-marks and the zero of the tide-pole are given below :-

1. Bench-mark Type 'B' near Passenger Jetty $10 \cdot 682$ feet
2. ", at Post office $\}$ Navlakhi 11.231 "
3. \quad, \quad at Port office $\}$ Navlakh $12 \cdot 321$,
4. Zero of tide-pole attached to Passenger

Jetty -14.798 ,
The instruments used for levelling in the Navi Wat area were Zeiss level No. SO 34508 Model II and wooden staves Nos. 011A and 011 B and those used in Navlakhi levelling were Zeiss level No. SO 34318 Model and invar steves Nos. 30 and 31.

The levelling was done in both the fore and back directions by the same observer. Every endeavour was made that the back levelling was done in the evening for sections which were observed in the morning and vice versa.

The line from Vāndhia to Navi Wat was carried along the carttrack up to Janghi Dak bungalow and thence along the marshes and small creeks (the banks of which were dangerously slippery and the orossing of which was only possible during neap tides) to Navi Wat. The line from Jhijhura to Navlakhi was carried through the fields up to Lavanpur and thence along the railway line up to Navlakhi. The area was plain.

For transport, bullock-carts were generally employed. Country craft and ordinary boats were also used.

The health of the detachment was good.
28. Progress of New Level Net.-The levelling under report hes added 27 miles of complete levelling (both directions) and about 654 miles in one direction only to the total mileage of the new high precision level net.

Out of an estimated total of 15,800 miles, the total mileage of this level net completed to date is 11781 miles.

TABLE 11.-Tabular statement of out-turn of work, season 1949-50

- This column inoludes oheok-levelling and relevelmente aleo.
(Continued)

TABLE 11．－Tabular statement of out－turn of work． season 1949－50．－（ contcl．）

Detachments and Ines levelled	Dates	Distance levelled			Total		｜Nurnber	Number of bench－marks connected		
				Total	Higes	Falls	statlons at which the in．	Protected Primary		
							atruments wers set up	苟	䍐	
		Mle．	｜sis．	MLs．	feet	feet		号	0	
Secon Jary Letel．	$\begin{gathered} 15-10-49 \\ \text { to } \\ 12-12-49 \\ \text { and } \\ 15-12-49 \\ \text { to } \\ 30-12-49 \end{gathered}$	79	23	102	029	636	1，232	\cdots	7	01
ling Detachment．										
Line Kishanganj to Serabatbna										
Line Srinagar to Harpur T．S．	$\begin{gathered} 17-2-60 \\ \text { to } \end{gathered}$	116	23	139	961	934	1，635	－．	11	115
	$\begin{aligned} & \text { 23-3-50 } \\ & \text { and } \\ & 8-4-50 \end{aligned}$									
	to									
Line Pratäpganj to Reghopur	$\begin{gathered} 17-10-49 \\ \text { to } \\ 3-12-49 \\ \text { and } \\ 13-12-49 \\ \text { to } \\ 14-12-40 \end{gathered}$	45	14	69	378	405	004	．	3	68
Line Madhipura to Tribeniganj	$\begin{gathered} 24-3-50 \\ \text { to } \end{gathered}$	19	2	21	161	132	249	\cdots	1	20
	5－4－50									
Line Padrauna to	Oot． 49 to	21	4	25	180	102	$256{ }^{\circ}$	\cdots	2	27
Chitaunighāt	Nov． 49									
Line Padrauna to	$\begin{gathered} \text { Deo. } 40 \\ \text { to } \end{gathered}$	197	49	248	1，383	1，436	2，583	．．	24	248
Mazzaffarpur	Feb． 50									
Line Muzzeffar－ pur to Hajipur	$\begin{gathered} \text { Mar. } 50 \\ \text { to } \end{gathered}$									
	April 60	113	23	138	728	774	1，402	．	10	149
Line Captain－ ganj to Tribeni－ ganj	$\begin{aligned} & \text { May } 50 \\ & \text { to } \\ & \text { June } 50 \end{aligned}$	64	21	75	413	345	546	．	11	43
Line Hoahangābad to Jubbulpore	$\begin{gathered} 13-12-49 \\ \text { to } \\ 8-7-50 \end{gathered}$	168	155	323	6，391	4，155	3，548	1	24	261
Line Timarni to Malrai	$\begin{aligned} & 14-11-4 \theta \\ & \text { to } \\ & 10-12-49 \end{aligned}$	28	10	38	1，225	047	688	\cdots	1	31

＊This oolamn inoludes oheok－levelling end relevelments also．
（Condinued）

TABLE 11.-Tabular statement of out-turn of work, season 1949-50.-(contd.)

TABLE 11.-Tabular statement of out-turn of work, season 1949-50.-(concld.)

- Thia column inoludea cheuk-levelling and relevelmente also.

TABLE 12.-Check-levelling

Discrepancies between the old and new heights of bench-marks.

Bench-marks of the orignal levelling that were connected for cheak-levelling				Observed helght above (+) or below $(-)$ atarting bench-mark as determined by			
No.	Degree Bheet	Desorfption		Date original levelllin	Ortgal levelling	Check-level- ling $1049-50$	
			miles		feet	seet	fees
At Bālăsore on line No. 121							
78	73 K	S.B.M. at Bälăsore . .	0.0	1938.40	0.000	0.000	0.000
138	-	On stone	0.0	"	- 2.067	- 2.089	+0.001
140	-	On veranda	0.1	-	- 4.138	- 4.152	-0.014
92	-	Embedded B.M. ..	1.0	",	+ 14.435	+ 14.427	-0.008
143	"	On I.B. veranda ..	1-1	-	+18.174	+ 18.185	-0.009
144	-	On parapet	$1 \cdot 3$	"	+ 17.222	+ 17.229	+0.007
135	-	In S.D.O.'s Office	$2 \cdot 2$	",	- 0.217	- 0.153	+0.064
At Calcutta on line No. 74 B							
353	78 B	At Caloutta Mint ..	0.0	1947-48	0.000	0.000	0.000
994	\cdots	Howrah bridge ..	0.2	..	- 0.262	- 0.258	+0.004
992	"	Strand ware-house..	0.3	-	+ 1.958	+ 1.953	-0.003
${ }_{990}^{990}$	\because	At M.M. Office ${ }^{\text {Abdul Ghani Fort . }}$.	0.7 0.8	"	$\begin{array}{r} \\ +\quad 3.568 \\ +\quad 0.752 \\ + \\ \hline\end{array}$	$\begin{array}{r}\text { a } \\ +\quad 3.554 \\ +\quad 0.742 \\ \hline\end{array}$	-0.014 -0.010
089	"	Abdul Ghani Fort ...	0.8 1.5	"	$\begin{array}{r}+\quad 0.752 \\ +\quad 6.043 \\ + \\ + \\ \hline\end{array}$	$\begin{array}{r}\text { a } \\ +\quad 0.742 \\ +\quad 6029 \\ \hline\end{array}$	- $\begin{aligned} & -0.010 \\ & -0.014\end{aligned}$
988	";	Canning's statue ..	1.8	",	+ ${ }_{+}+6.671$	+	-0.017
304	"'	Outram's statue \because	$2 \cdot 6$	"	+ 2.672	+ $2 \cdot 689$	-0.003
368	"	$\begin{array}{ll}\text { S.B.M. at } \\ \text { Office } & \text { at } \\ \end{array}$	$3 \cdot 2$		+ $2 \cdot 104$	+ 2.094	-0.010
At Kārwār on line No. 129							
1	48 J	Embedded at Kär-					
		Шār	0.0	1888.87	0.000	0.000	0.000
$\begin{aligned} & 48 \\ & 49 \end{aligned}$	\because	On oap stone On granite	$\begin{aligned} & 0.0 \\ & 0.5 \end{aligned}$	"	- $\begin{array}{r}4.787 \\ -\quad 3.067\end{array}$	$-\quad 4.928$ $-\quad 3.072$	- $\begin{aligned} & 0.161 \\ & -0.005\end{aligned}$
At Hubli on line No. 129							
	48 M	Embedded at Hubli	0.0	1807.08	0.000	0.000	0.000
2		Munioipal borough..	0.2	,	$+15.542$	+ 15.503	-0.039
3	-	On hospital flooring	$0 \cdot 3$		+ 18.165	+18.157	-0.008
At Vizagapatam on line No. 126							
72	650	Plinth	0.00	1900.10	0.000	0.000	0.000
73		Plinth	0.50	"	+ 10.236	$+10.272$	$+0.037$
74	-	Floor	$0 \cdot 34$.	+ 2.573	+ 2.635	+0.082
75	\because	Typa (C)	0.01	"	+ $+\quad 3.478$ $+\quad 2.323$	+ 3.501	+0.093
71	-	S.B.M. (P)	$0 \cdot 34$	"	+ $2 \cdot 323$	+ 2.404	+0.031

TABLE 12.-Check-levelling.-(contd.)
Discrepancies between the old and new heights of bench-marks.

Bench-marks of the orginal levelling that were connected for checs-levelligg				Ohacrved helaht above (+) or below $(-)$ starting bonch-mark us determined by			
No.	Degreo sheet \qquad	Description		orlglnal levelung	Orglnal levelling	Check-level Ing 1040-60 \square	
			miles		feet	feet	seel
At Viziunagram on line No. 126							
35	65 N	Stone	$0 \cdot 00$	1038-40	0.000	$0 \cdot 000$	0.000
225		Furlong atone '..	$0 \cdot 40$	"	$+1.136$	$+1.120$	-0.010
228	"	Step ..	0.63	"	+ 8.811	+ 8.817	$+0.008$
227	"	Flooring	0.73	"	+ 10.834	$+10 \cdot 862$	+0.028
228	\because	Bridge	0.83	"	$+28.939$	+ 28.973	+0.034
230	"	Culvert	$1 \cdot 24$	"	+ 9.408	+ 9.405	-0.003
234	"	Iron bolt	1.41	",	+ 29.860	+ 29.869	$+0.009$
235	"	Stone prism ..	$1 \cdot 41$	"	+ 29.356	+ 29.303	+0.007
236	"	Stone prism . .	$1 \cdot 41$	"	+ 29.328	$+29.338$	$+0.008$
237	"	S.B.M. (Type M) . .	1.41	"	+ 30.230	+ $30 \cdot 247$	$+0.008$
175	\because	Bridge	$0 \cdot 00$		+ 9.330	+ 9.321	-0.015
238	"	Bridge	$0 \cdot 09$	"	+ 7.907	+ 7.016	$+0.000$
At Raipur on line No. 118							
180	64 G	Bridge	0.00	1935-36	0.000	0.000	0.000
179 (43)	"	Coping of platform	0.21	1937-38	+ 1.747	+ 1.743	-0.004
178 (79)	,	Culvert .	0.45	"	- 12.604	- 12.614	-0.010
177 (45)	"	Pavement	$1 \cdot 18$	",	+ $10 \cdot 120$	+10.116	-0.004
$175(46)$	"	Step	1.60	"	+15.294	+ +15.285	-0.009
$176(77)$	"	Step	$1 \cdot 60$	"	+ 17.024	+ 17.013	-0.011
170	"	Step	1.84	"	+ 17.011	+18.987	-0.024
174 (76)	"	Step	2.01	"	+ 25.744	+ $25 \cdot 786$	$+0.022$
171	",	Culvert	$2 \cdot 24$	"	+ 20.308	+ $29 \cdot 169$	-0.137
237	"	Culvert	$3 \cdot 29$	"	+ 21.151	+ 21.081	-0.090
48	"	Stone	$3 \cdot 36$	"	+ 24.320	+ 24.310	-0.001
$173(75)$	"	S.B.M.	$3 \cdot 81$		+ 40.544	+ $+40 \cdot 480$	-0.084
$172(73)$	\because	Culvert	$4 \cdot 34$	",	+ $+\mathbf{4 0 . 9 7 3}$	$1+41 \cdot 020$	+0.047
At Kishanganj on line No. 76 A							
29	72 N	Rly. bridge	$0 \cdot 00$	1899-1000	0.000	0.000	0.000
28	"	Rly. bridge	2.98	,	+ 5.784	+ 5.748	-0.030
27	-	Rly. bridge	3.78	"	+ 3.726	+ $+\quad 4.320$	+0.694
30		Rly. bridge	$2 \cdot 75$		$\begin{array}{ll} 1 & 0 \cdot 203 \end{array}$	$1-6.150$	+0.044
113	720	Rly. bridge	3.64	"	- 7.579	- 7.578	$+0.001$
114	-	Embedded at Kanki	4.04		-7.700	-7.852	-0.140
115	*	Bly, bridge .	$0 \cdot 13$	"	- 11.348	$-11 \cdot 648$	-0.209

(Oontinued)

TABLE 12.-Check-levelling.-(contd.)
Diserepancios between the old and new heights of bench-marks.

Benoh-marks of the origlnal levelling that were connected for check-levelling				Observed helght abova (+) or below $(-)$ starting beuch-mark as dotermined by			
No.		Descriptlou		Date or orginal levalling	Origlnal levelling	Check-lovelling 1948-48	
			miles		feed	feet	feed
At Purnea on line No. 151 B							
348 PP	720	S.B.M. at Purnea	$0 \cdot 00$	1934.36	0.000	0.000	0.000
347	"	Culvert	0.30		+ 1.080	+ 1.089	+0.009
346	"	Culvert	$1 \cdot 30$		- 1.770	- 1.777	-0.007
344	"	Embedded at Purnea R.S.	$3 \cdot 45$		+ 4.567	+ 4.581	+0.014
345	"	Bridge	$3 \cdot 79$	"	+ 3.843	+ 3 .850	+0.016
At Harpur on line No. 151 B							
130 Pr	72 J	Marla stone of Hèrpur T.S.	0.00	1934-36	0.000	$0 \cdot 000$	0.000
134	"	In temple	0.44	"	+ 2.208	+ 2.269	+0.001
133	"	On step	2.81	, .	+ 2.688	+ $2 \cdot 724$	+0.038
131	-	On oulvert	3.94	"	+ 2.832	+ 2.935	+0.103
130	"	On bridge	$5 \cdot 26$	"	+ 0.808	+ 0.940	+0.134
129	"	On milestone	$5 \cdot 98$		+ 3.311	$+4.162$	+0.851
128	"	In temple	$7 \cdot 29$		+ 7.449	+ 7.485	+0.030
127	"	On well	7.68		+ 0.805	+ 0.380	-0.425
138	"	On bridge	5.25	"	+ 0.813	$+0.921$	+0.108
At Diwanganj on line No. 151 B							
59	72 J	On stone	0.00	1934-38	0.000	0.000	$0 \cdot 000$
58		On well	0. 53	"	+ 2.280	+ $2 \cdot 310$	+0.020
97	72 N	On well	3.76		+ 3.108	+ $3 \cdot 113$	+0.005
95	"	On well	$4 \cdot 43$	",	+ 4.328	+ 4.309	-0.019
93	"	On well	6. 95		+ 5.202	+ 5.057	-0.145
At Muzaffarpur on line No. 151 B							
221 PP	72 F	S.B.M.	$0 \cdot 00$	1934-36	0.000	0.000	0.000
222	"	Stone step	0. 14	"	- 0.989	- 0.905	-0.006
223	-	Stone atep	0.22	"	- 2.147	- 2.170	-0.023
224	"	Bridge	1.41	",	+ 0.091	+ 0.005	+0.004
220	"	Plinth	$0 \cdot 03$		- 1.887	- 1.898	-0.009
209	"	Stone seat	0.49	,	+ 3.830	$+3.758$	-0.072
210	,	Bridge	1.10	"	+ 0.093	- 0.058	-0.151
207	-	Culvert	1.30	,	- 1.462	- 1.479	-0.017
203	"	Culvert	$2 \cdot 10$	"	- 1.023	- 1.041	-0.018
202	"	Culvert	3-24	"	- 1.174	- 1.210	-0.038
201		Culvert	4.39	"	- 4.541	- 4.836	-0.095

(Continued)

TABLE 12.-Check-levelling.-(contd.)
Discrepancies between the old and new heights of bench-marks.

Beacb-marks of the original levelling that were connceted for check-levelling				Observed lueight above (+) or below $(-)$ starting bench-mark as detrermined by			
			miles		feet	feet	feel
At Padrauna on line No. 151 B							
89	63 N	Step	0.00	1034.30	$0 \cdot 000$	$0 \cdot 000$	0.000
90	"	Well	1.01	,	- 1.063	- 1.532	-0.480
91	"	Bridge	$2 \cdot 35$	",	+ 0.971	$+\quad 0.889$	+0.018
92	"	Plinth	3.08	,	- 0.236	- 0.203	+0.033
95	,	Culvert	$7 \cdot 70$	"	- 7.671	- 7.599	+0.072
98	"	Culvert	$8 \cdot 74$,"	- 7.844	- 7.767	+0.077
88		Well	$1 \cdot 18$		- 0.030	- 0.341	-0.311
152	72 B	Bridge	$2 \cdot 73$	"	+ 1.049	+ 1.022	-0.027
At Captainganj on line No. 151 B							
102	63 N	Culvert	0.00	1934-36	0.000	0.000	$0 \cdot 000$
98	"	Well	$5 \cdot 35$		- $3 \cdot 797$	- 3.966	-0.169
96	"	Culvert	8.58	-	- 9.644	- 9.630	$+0.005$
95	,	Bridge	$9 \cdot 64$	"	- 9.471	- 9.477	-0.006
92	"	Bridge	14.33	"	- 2.038	- 2.103	-0.067
81	"	Bridge	15.08	"	- 0.829	- 0.891	-0.082
104	"	Culvert	$3 \cdot 46$	"	- 5.602	- 5.643	-0.041
At Jubbulpore on line No. 60 A							
	65 M						
I	65 M	pore ${ }^{\text {pre }}$	$0 \cdot 00$	1908.09	0.000	$0 \cdot 000$	0.000
102	"	R.M.S. office	0.26	"	+ 8.041	+ 8.062	$+0.021$
103	"	In oourt	0.45	-	- 3.327	- 3.295	+0.032
104	"	(Type M $)$ at Jubbul- pore	1.46		- 12.434	- 12.472	-0.038
105	"	On plinth \quad.	$0 \cdot 79$	"	$+\quad 9.875$	$+13.553$	+3.678
106	"	In cirouit house ..	0.70	,	+13.378	+ 13.388	+0.008
100	"	On platform ...	0.20	"	$+18.170$	+18.214	+0.044
107	,	In Cantt. hoard office	1.75	"	$\begin{array}{r}\text { a } \\ +\quad 8.818 \\ \hline \quad 63.855\end{array}$	+ 8.628	+0.010
109	"	On bridge	4.49	"	- 63.855	- $53 \cdot 683$	-0.038
110	"	On oulvert	6.65	"	- 78.750	-76.731	$+0.018$
88	"	On parapet	$2 \cdot 21$		+ 2.491	$+2 \cdot 621$	+0.030
97	"	On parapet	3.40	"	- 25.806	- 25.783	+0.043
86	,	On parapet	5.61	"	- $59 \cdot 789$	- 69.749	$+0.050$
OS		On parapet	$7 \cdot 43$ 0.79	"	- $61 \cdot 378$	-61.315	+0.084
170	64 A	On perapet ..	0.78	"	- 67.891	-67.757	+0.134

TABLE 12.-Check-levelling.-(contd.)
Discrepancies between the old and new heights of bench-marks.

(Continuad)

TABLE 12.-Check-levelling.-(concld.)
Discrepancies between the old and new heights of bench-marks.

TABLE 13.-List of triangulation stations connected by spirit-levelling, season 1949-50

Degree Sheet No.	Name of station	Height above mean sea-level		Difference (Lev.-Trian.)	Remaris
		Spiritlevelling	Trian. gulation		
		feet	feet	feet	
85 I	Hathbena H.S. $\begin{array}{lll}\text { Lat. } 198 & 51 ́ & 42 \cdot 34 \\ \text { Long. } 82 & 01 & 25 \cdot 96\end{array}$	2800	2800	0	Upper markBtone.
65 I	Sirsi H.S. $\begin{array}{llll}\text { Lat. } & 19 & 19 & 39 \cdot 21 \\ \text { Long. } 82 & 28 & 16 \cdot 67\end{array}$	2302	2302	0	Top of rectangular pillar.
64 H	Jhuriameri h.s. $\begin{array}{llll}\text { Let. } & 200 & 09 & 17 \cdot 80 \\ \text { Long. } 81 & 50 & 19 \cdot 11\end{array}$	2082	2065	-3	Ground level (Rock-in-situ).
60 I	Sargoli h.s. $\begin{array}{llll}\text { Lat } & 19 & 31 & 09 \cdot 94 \\ \text { Long. } 82 & 17 & 38 \cdot 30\end{array}$	2128	2127	+1	Rock-in-situ.
65 I	Kanthe Eill mark $\begin{array}{llll}\text { Lat. } & 19 \circ & 28 & 02 \cdot 60 \\ \text { Long. } 82 & 22 & 41 \cdot 30\end{array}$	2152	2147	$+5$	Intersected point (top).
65 I	Hirli No. 1 h.s. $\begin{array}{llll}\text { Lat. } & 19 & 13 & 37 \cdot 08 \\ \text { Long. } 82 & 32 & 06 \cdot 01\end{array}$	2114	2117	-3	Top (Rook-insita).
85 J	Athri h.s. $\begin{array}{llll}\text { Lat. } & 18 & 47 & 30 \cdot 30 \\ \text { Long. } 82 & 42 & 44 \cdot 69\end{array}$	3274	3281	-7	Upper markstone.
72 G	Kamtaul T.S. $\begin{array}{lrrr}\text { Lat. } & 25 & 59 & 11 \cdot 38 \\ \text { Long. } 85 & 1 \theta & 0.69\end{array}$	200	198	+2	Upper markstone.
72 A	Uparai T.S. $\begin{array}{llll}\text { Lat. } & 27 & 04 \\ \text { Long. } 84 & 66^{*} \cdot 06 \\ \text { Lol } & 28 \cdot 63\end{array}$	314	313	$+1$	Upper markstone.
72 B	$\begin{array}{lll} \text { Daungha } & \text { T.S. } \\ & \\ \text { Lat. } & 26 & 42 \\ \text { Long. } 84 & 16 \cdot 85 & 16 \cdot 81 \end{array}$	271	271	0	Ground level.

(Continued)

TABLE 13.-List of triangulation stations connected by spirit-levelling, season 1949-50-(concld.)

Degree Sheet No.	Name of station	Height above mean sea-level		Difference (Lev.-Trian.)	Rramazs
		Spiritlevelling	Triangulation		
		feed	feet	feet	
72 N	Musaldenge T.S. $\begin{array}{llll}\text { Lat. } & 200^{0} & 13 & 01 \cdot 80 \\ \text { Long. } 87 & 42 & 33 \cdot 81\end{array}$	170	172	-2	Height refers to © cut on mark stone 0 leet above ground level mark.
72 N	Manikpur T.S. $\begin{array}{llll}\text { Lat. } & 2 \theta^{\circ} & 12 \dot{2} & 10 \cdot 49 \\ \text { Long. } 87 & 21 & 13 \cdot 43\end{array}$	103	204	-11	S.L. height refers to $\%$ mark whose height above ground level mark. stone could not be ascertained. Trig. height refers to upper mark-stone.
720	Mohania T.S. $\begin{array}{llll}\text { Lat. } & 25 & 54 & 4 \dot{4} \cdot 44 \\ \text { Long. } 87 & 08 & 27 \cdot 79\end{array}$	151	153	- 2	Height refers to O out on mark-tone 14 feet below the top of the square tower.
55 B	Baódiya H.S. Lat. $22^{\circ} \quad 02^{\prime} \quad 48 \cdot 53$ Long. $76 \quad 28 \quad 24 \cdot 37$	1047	1047	0	Upper mark.
55 B	Anjānia Khurd H.S. Lat. $\quad 22^{\circ} \quad 12 \quad 12 \cdot 74$ Long. $76 \quad 25 \quad 26 \cdot 48$	059	957	+ 2	Upper mark.
64 B	Ballär H.S. Lat. 22086 6́ $27 \cdot 69$ $\begin{array}{lll}\text { Long. } 80 & 10 & 38 \cdot 62\end{array}$	2135	2130	$+5$	Upper mark. stone.
44 E	Jhuran H.S. $\begin{array}{lllr}\text { Lat. } & 230 & 21 & 37 \cdot 61 \\ \text { Long. } 69 & 59 & 0 \cdot 25\end{array}$	624	626	- 2	Upper mark.
41 I	Sbineys No. 1 H.s. Lat. 23 02́ $22^{\circ} \cdot 44$ Long. $70 \quad 01 \quad 67.32$	210	219	- 3	Lower marl.
41 I	Shinays No. 2 h.s. Lat. $\quad 23^{\circ} \quad 02^{\prime} \quad 4 \dot{6} \cdot 82$ Long. $\begin{array}{llll}70 & 03 & 41.05\end{array}$	186	189	- 3	Upper mark.

Chapter III

GRAVITY

by B. L. Gdlatee, m.a. (cantab.), f.r.i.c.s., m.i.s. (india)
29. Summary.-Gravity reductions for all the 77 gravimeter stations at approximately 10 -mile intervals established in Madhya Pradesh area mentioned in the last year's report, were carried out and gravity anomalies have been derived on the various hypotheses of Hayford's Coinpensation and Heiskanen's Regional Compensation.

In addition to the above, re-observations were made at the five gravity stations established by Dr. G. P. Woollard as part of his World net at Delhi in January 1949 (see Technical Report 1948-49, Part III, Chapter III, para 24).
30. Value of g at Palam Airport.-In January 1949 Dr. G. P. Woollard established five stations at Delhi with Worden gravimeter. These stations were also occupied by the Survey of India with the Frost gravimeter to tie them up with Dehra Dūn. The results were as follows :-

Place		Values of g by Frost gravimeter	Values of g by Worden gravimeter
		gals	gals
Willingdon Air Port	.	979-1359	979-1352
Imperial Hotel	.	-1363	-1364
Surveyor General's Office	.	-1456	-1459
Palam Road Junction	.	. 1317	-1320
Palam Air Port		979-1321	979-1424

It will be seen that there is good agreement between the Frost and Worden gravimeter values at all stations except at Palam Air Port, where there is a large difference of 10 mgals between the two instruments.

In order to find out the reason for this disorepancy, all the five stations were re-occupied in August 1949 with the Frost gravimeter. The instrument reproduced its original velues and it eppears certain that the discrepancy is due to a booking error in the Worden gravimeter readings.

The repeat observations were carried out by Mr. S. Vaikuntanathan (Class II) under the personal supervision of the Director, Geodetic and Training Circle from 24th to 29th August 1949.
31. Reduction and interpretation of gravity anomalies in the Nagpur area.-Gravity reductions for all the stations observed with the Frost gravimeter in the Nägpur area of Madhya Pradesh (194748) have now been carried out on seven hypotheses. The results are given in Tables 1 to 4.

Charts XV and XVI show the Bouguer and Isostatic anomalies respectively. On the latter chart, the older contours drawn on the basis of pendulum stations aro shown by dotted lines. A comparison with the new contours is of interest. Gravimeter observations confirm the zero contour and the 20 -mgals contour passing through sheets 64 B and 550 . The older 20 -mgals contour in sheet 55 N , however, appears to be wrong and requires a considerable shift upwards. Gravimeter observations are based on pendulum station Seoni as datum. Pendulum stations at Nāgpur and Amgaon were also connected by the gravimeter and checked satisfactorily. It would be desirablo to cover the remaining portion of shoet 55 N with further gravimeter stations to delineate this contour and the apparently higher contours below it in greater detail.

There is a pocket of large positive anomalies of 55 mgels or so which was missed by the pendulum observations, as they were too far apart.

The Bouguer anomalies are all negative and on the whole small. Chart XVII shows the section on line AB from which it would appear that the anomalies display a progressive increase in this direction.

The anomalies are on the whole closely related to geology. They are computed on the assumption of the average density of the rocks being $2 \cdot 67$. The Deccan trap in sheet 55 N has an average density much higher than this (about $2 \cdot 9$ or so). The more positive Bouguer anomalies in this area are presumably due to this cause. The variations in the thicknesses of the trap will also influence the anomalies considerably.

The south-west corner of Sheet 64 C appears to be of interest. On transition from the alluvium to the gneisses the anomalies show a progressive trend.

A further discussion will follow when the various gaps in this area have been filled by observations and a more comprehensive picture becomes available.
32. Magnetic anomalies.-Magnetic vertical force observations were also carried out in conjunction with the gravimeter observations with magnetic V.F. variometers No. 19134 and 19135. The former was used at the base station and the latter at the field stations. Scale values of the instruments were determined from time to time and the results obtained were steady. The values adopted for the two instruments were 28.5 and 19.0 gammas respectively.

Table 5 gives magnetic anomalies computed with reference to Jubbulpore magnetic repeat station. The observed values have

Modified Bouguer ($g-\gamma_{B}$) Anomaly

Primiod at the Burrey of India Offloen (P.Z.O.).
Magnetic Anomalies (Vertical Force)

Printod at the Burvey of Inde Offloos (?.Z.O).
been corrected for closure, diurnal and latitude variations. The latitude variations were derived from the generalised V.F. charts of the Earth's field published by the United States Coast and Geodetic Survey, 1945.

At station No. G/9 (Sheet 64 C), a very large anomaly of -1900γ was obtained. This is purely a local phenomenon and has been ignored in the drawing of contours of magnetic anomalies (Chart XVIII).

The strong magnetic lows are possibly connected with iron ore or manganese ore formations having reverse polarization due to thermal and mechanical processes or they might be produced by remanent magnetisation in the neighbouring rocks.

The range ot anomalies is considerable as is inevitable in a regional survey like the one under discussion as certain stations must be burdened with large local effects. The stations marked by crosses denote magnetically disturbed areas whore the anomalies change by over 100 gammas in a distance of a few yards.

In sheet 55 N , the stations are mainly located on trap and display a very large variation in the magnetic anomalies. Large positive magnetic and gravity anomalies are expected in trap areas.

On the meridian of 80° near latitude 21°, there is a steady increase in the anomalies on crossing the junction between the Dharwars and gneisses.

Chart XIX shows the magnetio variation along the section AB. As with gravity, the magnetic anomalies show a steady decrease in this direction except et the end, where the transition from alluvium to gneisses is accompanied by an increase.

TABLE 1.-Gravi:

* Topographioal reduction up to zone 0.

Note :-All observed values of ' g ' are in terms of Seoni Pendulum Station ($g=978 \cdot 622 \mathrm{gal}$

Anomalies

TABLE 2.-Grav

No.	Stations in Sheet 550	Height	Latitude	Longitude	$\underset{\substack{g \\ \text { (observed } \\ \text { value) }}}{ }$	H]		
						$g-\gamma_{A}$	$\theta-\gamma_{\text {B }}$	$\begin{gathered} \text { Modi6 } \\ g-\gamma \end{gathered}$
		feet	- ,	,	gals	mbals	mgals	mga
17	G 1	1067	211440	790803	078.6232	+15.7	-20.0	-14
18	G 2	870	0905	2329	- 6278	+ 74	-22.5	-19
19	G 3	835	0925	3907	- 6260	+ $2 \cdot 1$	$-26 \cdot 7$	-23
20	G 4	871	0903	3153	-6319	$+11.6$	-18.4	-14
21	G 5	805	0830	1238	-6233	+ 6.9	$-24 \cdot 2$	-21
22	G 6	975	1820	0407	-6220	$+3 \cdot 2$	$-30 \cdot 4$	-26
23	G 7	917	1319	1121	- 6288	+ 8.5	$-23 \cdot 1$	-19
24	G 8	980	1823	1353	-6285	+ 9.3	-24.5	-21
25	G 9	915	1409	1805	-6261	$+5.0$	-28.5	-23
28	G 10	1020	0858	0455	- 6158	+9.6	-25.5	-22
27	G 11	1188	2238	2318	-6177	+13.5	-26.4	-17
28	G 12	1060	2340	1545	- 8291	$+12 \cdot 7$	-24.1	-20
29	Tirora	008	2449	5508	-6386	+4.0	-27.2	-23
30	G 17	955	4056	5820	- 6573	$+12.5$	$-20 \cdot 4$	-17
31	G 19	1521	4920	4041	-6435	+43.3	-09.1	- 7
32	G 20	1793	5613	4300	-6355	+53.7	-08.0	$-\varepsilon$
33	G 21	885	3110	5408	- 6471	+5.7	-24.8	-21
34	G 22	1089	4728	5403	- 6822	+23.3	-14.2	-16
35	G 23	888	1209	4736	- 6323	+10.5	$-20 \cdot 1$	-16
36	G 24	1090	3957	4045	- 6525	$+21.4$	$-16 \cdot 2$	-15
37	G 25	1083	3916	4808	-6484	+17.4	-19.9	-1i
38	G 26	1136	3059	3057	- 6372	$+19.7$	-19.4	-11
39	G 27	1034	3103	4322	-6353	+ $8 \cdot 2$	-27.4	-24
40	G 28	1023	2403	3036	- 6285	+ 7.5	$-27 \cdot 7$	-2
41	G 29	937	0404	3918	- 6243	-4.9	$-37 \cdot 2$	-3:
42	G 30	882	2220	5010	- 0383	$+3.0$	-25.8	-2:
43	G 31	944	1530	2753	-6212	+1.3	$-31 \cdot 2$	-2'
44	G 32 G 34	883 854	1415 $21 \quad 0408$	3841 784834	$\cdot 6320$ $978 \cdot 6356$	+8.0 +18.9	-23.7 -10.2	-21
		Mean with regard to				+12.3	-22.6	-1
		Mean without regard to sign				$12 \cdot 7$	$22 \cdot 6$	1
		Range			\cdots	$58 \cdot 8$	29.4	2

* Topographiosl reduotion up to zone 0.

Note :-All observed values of ' g ' ere in terms of Seoni Pendulum Station ($g=078 \cdot \mathbf{\theta 2 2} \mathrm{gt}$

Anomalies

MERT'S FORMULA					LNTERNATIONAL FOMMULA				
$\begin{gathered} \text { Heyford'e } \\ \text { compen. } \\ \text { sation } \\ 113.7 \mathrm{~km} \end{gathered}$	Heiskanen's regional compensation				$\begin{gathered} \hline \text { Hayford's } \\ \text { compen. } \\ \text { sation } \\ 113.7 \mathrm{~km} . \end{gathered}$	Heiskanen's reoional COMPENSATION			
	40 km .	60 km .	90 km .	100 km.		40 km .	60 km .	80 km .	100 km .
megals	mgals								
+15.2	+16.8	+18.0	+14.5	+12.2	-2.5	-0.9	- 1.7	- $3 \cdot 2$	- $5 \cdot 5$
$+11.6$	+12.0	+12.6	+11.4	+ $9 \cdot 6$	-8.1	-4.8	$-5 \cdot 1$	-6.3	-8.1
$+6.5$	+ $7 \cdot 7$	+ 7 -4	+ 0.4	+ 4.4	$-11 \cdot 2$	$-10 \cdot 0$	$-10 \cdot 3$	$-11 \cdot 3$	$-13 \cdot 3$
+14.6	$+15 \cdot 0$	+15.6	+14.6	+12.6	- $3 \cdot 1$	-1.8	$-2 \cdot 1$	- $3 \cdot 1$	$-5 \cdot 1$
+ 9.8	+11.4	$+10 \cdot 7$	+ 9.4	+ $7 \cdot 5$	-7.8	$-0 \cdot 3$	$-7 \cdot 0$	-8.3	$-10 \cdot 2$
$+6.8$	$+8.5$	+ $7 \cdot 5$	+ $5 \cdot 8$	+ $3 \cdot 6$	$-10 \cdot 9$	$-9 \cdot 2$	$-10 \cdot 2$	$-11 \cdot 0$	$-14 \cdot 1$
+12.0	$+13.6$	+12.9	+11.4	$+8.5$	- $5 \cdot 7$	$-4 \cdot 1$	$-4 \cdot 8$	-6.3	-8.2
+11.6	+13.2	+12.4	$+10 \cdot 0$	+8.7	- 6.1	-4.5	$-5 \cdot 3$	-6.8	$-9 \cdot 0$
$+8.3$	$+9.9$	+ 9.3	+ 78	+ 5.8	-0.4	-7.8	- 8.4	-9.9	$-11 \cdot 9$
$+9.1$	$+10 \cdot 7$	$+0.8$	+8.2	+ 8.2	$-8 \cdot 6$	-7.0	-7.9	-9.5	$-11 \cdot 5$
$+11 \cdot 0$	+12.5	+11.6	+10.0	+ 7.8	-6.7	$-5 \cdot 2$	-6.1	-7.7	-0.9
$+13 \cdot 9$	$+15.4$	+14.3	+12.7	$+10 \cdot 6$	$-3 \cdot 8$	$-2 \cdot 3$	-3.4	-5.0	$-7 \cdot 1$
$+8.1$	$+8.4$	+ 8.0	+ 7.7	$+5.9$	$-9 \cdot 6$	-8.3	$-8 \cdot 7$	-10.0	-11.8
+18.5	+20.6	$+19.5$	+17.9	+15.8	+ 0.8	+ $2 \cdot 8$	+1.8	$+0.2$	-1.9
$+35 \cdot 0$	$+36.2$	+34.2	$\underline{+31.9}$	+28.9	$+17 \cdot 3$	$+18.5$	+16.5	+14.2	$+11 \cdot 2$
$+38 \cdot 1$	+39.1	+36.4	+34•0	$+31 \cdot 0$	$+20 \cdot 4$	+21.4	$+18 \cdot 7$	+10.3	+13.3
$+12 \cdot 1$	$+13 \cdot 7$	+13.2	+11.8	+ 9.8	$-5 \cdot 6$	$-4 \cdot 0$	-4.5	-5.9	-7.9
+26.9	+28.0	+27.2	+25.4	$+22 \cdot 8$	$+8 \cdot 2$	$+10 \cdot 9$	$+9.5$	+ 7.7	$+5 \cdot 1$
+13.3	+14.7	+14.2	+13.0	+11.2	-4.4	- 3.0	$-3 \cdot 5$	-4.7	-6.5
+24.1	+25.9	+24.4	$+22.6$	$+20 \cdot 3$	$+6.4$	+ 8.2	+6.7	+ 4.9	+ 2.6
+18.7	$+20.4$	$+19 \cdot 4$	$+17 \cdot 7$	$+15 \cdot 7$	+ 1.0	+ $2 \cdot 7$	+ 1.7	$0 \cdot 0$	$-2 \cdot 0$
+18.9	$+20.1$	$+19 \cdot 2$	+17.7	+15.7	$+1 \cdot 2$	$+2 \cdot 4$	$+1.5$	$0 \cdot 0$	- 2.0
$+9 \cdot 6$	+11.1	$+10 \cdot 6$	+ $9 \cdot 2$	+ $7 \cdot 1$	-8.1	- $8 \cdot 6$	-7.1	-8.5	-10.8
$+8.8$	$+10 \cdot 2$	$+0.3$	$+8.1$	$+6.1$	-8.9	-7.6	-8.4	-9.6	-11.8
-1.4	+0.1	-0.4	-1.5	$-3 \cdot 3$	$-19 \cdot 1$	-17.6	$-18 \cdot 1$	$-10 \cdot 2$	$-21 \cdot 0$
$+0 \cdot 0$	$+10.5$	$+10 \cdot 0$	$+8 \cdot 7$	$+7 \cdot 0$	-8.7	$-7 \cdot 2$	-7.7	$-8 \cdot 0$	-10.7
$+3.5$	$+\overline{0} \cdot 1$	+4.7	$+3 \cdot 3$	$+1.5$	$-14 \cdot 2$	-12.6	$-13 \cdot 0$	$-14 \cdot 4$	-18.2
$\begin{aligned} & +8.5 \\ & +21.7 \end{aligned}$	+10.6 +22.8	+10.4 +22.4	+0.2 +21.2	+7.5 +19.4	- 8.2 +4.0	7.1 $+\quad 5.1$	-7.3 +4.7	+ 8.5 +3.5	-10.2 +1.7
+14.0	+15.4	+14.6	+13.1	+11.1	$-3 \cdot 7$	-2.3	$-3 \cdot 1$	-4.0	-6.6
14.1	$15 \cdot 4$	$14 \cdot 6$	13.2	$11 \cdot 3$	$7 \cdot 9$	$7 \cdot 2$	$7 \cdot 3$	7-8	0.0
$30 \cdot 5$	$39 \cdot 0$	30.8	$35 \cdot 5$	$34 \cdot 3$	39.5	39.0	$38 \cdot 8$	$35 \cdot 5$	$34 \cdot 3$

TABLE 3.—Graथा

- Topogrephiosl reduotion up to zone 0.

Note :-All observed values of ' g ' are in torms of Seoni Pendulum Station ($\sigma=878 \cdot 622$ gate

Anomalies

* Topogrephiasl reduotion up to zone 0 .

Note :-All observed values of ' q ' are in terms of Seoni Pendulam Station ($q=078 \cdot 822 \mathrm{gala}$).

Anomalies

TABLE 5.-Magnetic Anomalies

No.		Station		Latitude	Longitude	Height	Magnetio Anomalies*
		Suret 5 EN		- '	- ' "	feet	gammas
1	$G^{6} 1$		\cdots	222011	703351	2077	+ 706
2	G 2		.	3804	4837	1859	-414
3	G 3		.	3614	4400	2084	- - 2.4
4	G 4		\cdots	3500	3645	2004	- 250
5	G 5		.	1045	3254	1890	- 387
6	G 6		..	0535	3304	2027	- 323
7	G 7		\cdots	2643	4934	1594	- 357
8	G 8		.	17 ¢9	4858	1500	- 100
θ	G 0			1005	4133	1737	+ 240
10	G 10		\cdots	1728	5817	1067	- 344
11	G 11		.	2604	6740	1545	- 704
12	G 12		\cdots	0818	4816	1688	- 283
13	G 13		\cdots	1542	4323	1854	$+\quad 37$
14	G14		.	0220	4245	1761	-125
15	G 15			0137	4938	1739	- 274
18	G 10		\cdots	220124	785029	1151	-215
		Shret 550					
17	G 1		\cdots	211440	790803	1067	- 658
18	G 2		.	0905	2329	870	- 495
19	G 3		.	0925	3907	835	- 308
20	G 4			0903	3163	871	- 394
21	G 5		\cdots	0830	1238	905	- 547
22	G 6		\cdots	1820	0407	975	- 522
23	G 7		.	1319	1121	917	- 621
24	G 8		.	1823	1353	980	- 631
25	G 9		.	1409	1805	915	- 540
20	G 10		\cdots	0858	0455	1020	- 448
27	G 11		.	2238	2318	1186	- 855
28	G 12		.	2340	1545	1069	-1147
29	Tirors		..	2449	0508	908	- 439
30	G 17		.	4056	5820	955	- 474
31	G 19		.	4920	4041	1521	- 362
32	G 20		\cdots	6013	4300	1793	- 454
33	G 21		.	3110	5408	885	- 429
34	G 22		.	4728	5403	1089	- 328
35	G 23		\cdots	1209	4730	888	- 554
96	G 24		.	3957	4046	1090	- 381
37	G 25		\cdots	3915	4808	1083	- 299
38	G 28		..	3069	3057	1138	- 405
39	G 27		.	3103	4322	1034	- 845
40	G 28		.	2403	3030	1023	- 507
41	G 29		.	0404	3918	937	- 509
42	G30		.	2220	5010	882	- 718
43	G 31		.	1539	2753	844	- 393

- With reapeot to Jubbulpare Megnetio Repeat Station.

TABLE 5.-Magnetic Anomalies-(concld.)

No.	Station	Latitude	Longitude	Hoight	Magnetio Anomalies*
	Steet 50	- '	- '	feet	gammas
44	G 32	1410	3841	863	-462
45	G 34	210408	784834	854	- 612
	Sheet 64 B				
48	G 1	223041	800263	1483	+ 77
47	G 2	2538	0621	1438	- 99
48	G 3	2441	1718	1674	+ 65
49	G 4	1528	0340	1170	- 33
50	${ }^{G} 5$	2248	2829	1833	- 23
51	G 6	1418	1607	1918	- 76
52	G 7	1523	2928	1881	-208
53	G 8	0739	0352	1108	- 207
54	$G 9$	1002	1522	1805	- 128
55	G 10 -.	0806	2253	2001	- 21
56	Q11 ..	220610	803254	1829	- 11
	Shret 64 C				
57	G 1	2150	800331	1005	- 262
68 59	G ${ }_{\text {G }}$	5828 5800	0930 1610	1883	- 3173
${ }^{60}$	G 4	5811	2928	2049	- 115
81	G 5	4828	0252	${ }^{998}$	- 382
62	Q 0	4834	1205	995	- 261
${ }^{63}$	G 7	5232	2027	1959	-118
${ }_{85}^{64}$	G 8 G 9	6218 39	3321 01	1927 924	- 220
${ }_{6}^{65}$	G 9	3854		024	-1910
${ }^{68}$	G 10	3730	1242	909	- 295
${ }_{88}^{87}$	G 11	3734 39	1840	${ }_{1048} 96$	- 334 -323
${ }^{88}$	G 12	3020	2713	1046	- 323
${ }^{69}$	013	2901	0351	946	-127
70		2749	1151	1010	- 351
71	G 15 Sakoli (P.P.B.M.)	0513	0028	864	- 491
72	G 16	2118	0020	904	-1137
73	G 17	2021	1215	1004	- 574
74	G 18	4500	2116	1010	- 227
75	G 19	1151	1124	944	- 664
76		0444	0909	858	- 576
77	G 21 Pendulum station.	1054	0028	980	- 423
	Amgaon Jamri h.e. (No. 94	2131	$28 .$.	1032	- 464
	P.P.B.M.)	2124 21	($\begin{array}{r}01 \\ \hline 80 \\ \hline 18\end{array}$	1716	- 991
.	Sitapur (No. 31 P.P.B.M.)	212451	801828	1241	- 688

- With reapeot to Jubbalpore Magnetio Repeat Station.

Chapter IV

DEVIATION OF THE VERTICAL

by B. L. Gulatee, m.a. (olantab.), f.r.i.d.s., m.i.s. (india)
33. General.-Deflections of the vertical in both components were measured at four stations in Kutch. These furnished very useful information about deflections in an area where no astronomical observations had been carried out before.

These stations were also made into Laplace stations.
34. Narrative of the Season's Work:-The detachment consisting of Mr; J. B. Mathur (Surveyor), one recorder and 12 khalāsīs commenced observations for Laplace at Kanmer on 22nd October and after observing for two nights proceeded to Chitrod for similar observations. After helping in the base-measurement, the detachment then proceeded to Vārār H.S. and Sāmatra H.S. and completed the observations on 7th December 1949.

Observations were made with a large 45 -degree prismatic astrolabe. Two nights' observations were taken at Kānmer and one nights' at the other three stations. Greenwich time was obtained from Rugby 09:55 and 17:55 G.M.T. signals. The " demi-definitive" corrections of the Bulletin Horaire have been appliad to the times of emission. Observations for personal equation were made at Dehra Dún before and after the field work.
35. Personal Equation.-The personal equation was determined at Dehre Dūn before and after field work with the following results :-

Before Hold		After feld	
Date	Pergonal equation	Date	Persomal equation
27th September 1949 , ..	$+0^{6} \cdot 3$	10th December 1949	+ ${ }^{\circ} \cdot 31$
29th September 1949 ...	+0.32	21st December 1949	+0.27
2nd Ootober 1949	$+0.20$	23rd Deormber 1949	+0.22
Mann..	$+0^{5 \cdot 32}$		+ ${ }^{8}$

36. Details of the Laplace Statipns.-The following table gives the details of the Laplace correotions. The stations were observed in pairs, Kānmer H.S. and Chítrod H.S. forming one pair and Sāmatra H.S. and Vārār S. the other.

Details of the Laplace corrections

Station	Känıner H.S.	Chitrod H.S.	Vĩrår H.S.	Sĩmatra H.S.
	- ,		- '	-
Geodetic latitude $=\lambda \mathrm{g}$	$23 \quad 23 \quad 51 \cdot 40$	$23 \quad 23 \quad 30 \cdot 87$	$23 \quad 2033 \cdot 25$	$23 \quad 0948 \cdot 71$
Geodetic longitude $=L_{g}$	$70 \quad 52 \quad 40 \cdot 46$	7041 03-81	0933 35.81	$693047 \cdot 64$
$\begin{array}{cr} \text { Astronomioal } & \text { letitude } \\ =\lambda_{a} \ldots & \ldots \\ \text { Probable error } & \ldots \end{array}$	$\begin{array}{r}23 \\ 23 \\ \pm \\ \hline\end{array}$	$\begin{array}{r}23 \\ 23 \\ \hline\end{array}$	$232028 \cdot 07$ $\pm 0 \cdot 49$	23 0944.45 $\pm \quad 0.87$
Astronomical Longitude $=\mathrm{La}$ Probable error	7052 $12 \cdot 68$ $\pm \quad 0.40$	$\begin{array}{rrr}70 & 41 & 08.75 \\ \pm & 0.27\end{array}$	$\begin{array}{r} 693330 \cdot 45 \\ \pm \quad 0.24 \end{array}$	$\begin{array}{r} 693048.30 \\ \pm \quad 0.47 \end{array}$
Correotion to reduce estronomical szimuth to geodetio $\underset{x}{=-\left[\left(L_{a} \lambda g-L g\right)+3 \cdot 2\right]}$	$-2 \cdot 2$	-2.4	$-1 \cdot 5$	-i.5

Station		Astronomioal szimuth at A of B with p.e.	Correction to reduoe astro. azi. muth to geodetic	Grodetio azimuth$=\mathrm{Ag}$	Published geodetio azimuth
A	B				
		- ,	*	- ,	-
Känmer H.S.	Chitrod H.S.	$\begin{array}{rr}8812 & 28.3 \\ \pm 0.4\end{array}$	$-2 \cdot 2$	$881220 \cdot 1$	$881238 \cdot 2$
Chitrod H.S.	Känmer ${ }_{\text {H.S }}$	$\begin{array}{r} 2680757 \cdot 4 \\ \pm 0 \cdot 4 \end{array}$	-2.4	$2080765 \cdot 0$	$2680801 \cdot \mathrm{t}$
Värār H.S.	Sȧmatra ${ }_{\text {H.S. }}$	$\begin{aligned} & 1333 \pm 8.7 \\ & \pm 0.4 \end{aligned}$	-1.5	$133345 \cdot 2$	$133354 \cdot 6$
Sāmetra H.S.	Vārār H.S.	$\begin{array}{r} 1033240 \cdot 2 \\ \pm 0.4 \end{array}$	$-1 \cdot 5$	$1933238 \cdot 7$	$1833248 \cdot 2$

It will be seen from the ebove table that convergence between the azimuth at Kannmer of Chitrod H.S. and the reverse azimuth Chitrod H.S. to Känmer differs from the correct value by $\mathbf{5}^{\prime \prime} \cdot \boldsymbol{\sigma}$. The reason for this discrepancy is not known but it is suspected that while observing ezimuth the lamp used as the reference mark got shifted without the observer noticing it. As the results for these two stations are doubtful they have been rejected.

The results at Sāmatra S. and Vārār S. are satisfactory and the azimuth given in the second table has been used in computing the co-ordinetes of the new Geodetio Triangulation in Kutch, Chepter I, see para 8.
37. Geoid in Kutch.-Table 1 gives the deflections at the four stations. It will be seen that their magnitudes are comparatively small.

These results have been used to extend the charts of the geoid and the compensated geoid in India. (Charts XXII and XXIII). A closed contour of 40 feet is indicated in the Kutch area. Observational data in this region and to the south of it is rather meagre. It is proposed to observe in the near future some deflection stations in Saurashtra in conjunction with the reobservation of geodetic triangulation that has to be carried out there, and it is hoped that these will give a more detailed picture of the geoid in this locality.
38. Hayford Deflections.-To date observations for determining the deviation of the vertical have been made at 1,210 stations. By 1940, deflections on Hayford's isostatic system assuming the depth of compensation as 113.7 kms ., had been computed at about 900 stations. Due to lack of personnel it has not been possible to continue these computations during the war period and in the post-war period so far.
39. Future Geoidal Programme.-Chart XXIV shows the geoidal sections. Although a number of reliable sections are now available for drawing a fairly accurate picture of the geoid, there are several areas for which knowledge of the geoid is either totally lacking or too meagre. These regions are the foot of the Himãlayas from Darjeeling to Srinagar in Kashmir, the Assam, Kutch, Saurashtra and the Western Coast from Mangalore to Cape Comorin. There are also some other weak sections which need strengthening. In the next two or three years it is proposed to run a meridional section from Dohad to Deesa and a longitudinal section from Bhavnagar to Porbandar. It is hoped to continue work as opportunity arises.

DEFLECTION STATIONS

TECHNTCAL REPORT [Part III, 1040-50
TABLE 1

$\begin{aligned} & \text { i } \\ & \frac{\lambda}{3} \\ & \frac{1}{6} \end{aligned}$	$\begin{aligned} & d \\ & \text { d } \\ & \text { 者 } \end{aligned}$	Obmered al		Internulional 8pherold Deledlon		Catalated DetieoHifford syinem			
				Hertiden	P.v.	Maralen	P.v.	Meridan	P.v.
1207	11 E	Vardr Hs.		- $2 \cdot 9$	- i.1	-	-	-	-
1208	41E	Shastre H.S.		-2.1	-1.2				
1800	41 I	Känmer H.s.		$\|-2.3\|$	+ 1.0				
1910	411	Chlurod H.s.		-0.8	$+1 \cdot 0$				

CTAP. iv] DEVIATION OF THE VERTICAL
DEFLECTIONS 1940-50

(b) By touring tidal detachment of the Survey of India.A series of 31 days' systematic observations on tide-pole was carried out by a tidal detachment, under Mr. G. S. Tonk (Surveyor), at each of the ports, Navlakhi (Stanclard Port) and Navi Wat (Secondary Port) in the Gulf of Kutch. The observations consisted, as usual, of readings at intervals of every half-hour during both day and night, and also at the times of high and low waters. The work was executed at the request of the Development Commissioner, Kandla port, for the purpose of obtaining up-to-date tidal information in the neighbourhood of the Kandla area in connection with its development.

The detachreent which, apart from the officer-in-charge, comprised of 4 class III and 6 class IV personnel left Dehra Dün for the field on 7th January 1950 and returned to the Headquarters, after completion of programme on 13th April 1950. Due to various reasons, no other port could be visited during the season for such observations.
41. Harmonic Analysis.-The field observations that had been carried out at Port Okha, Mandvi, Porbandar and Bhavnagar during the 1948-49 season were harmonically analysed, during the recess in 1949, by the Admiralty Method. The results of this analysis, together with the comparative values of the tidal constants that have hitherto been accepted as standard, are given in Table 1(a).

It will be seen that while no significant changes in the constants have taken place in the case of Port Okha and Porbandar in the course of the last half a century or so, considerable changes have occurred in the case of Bhavnagar. The latter has presumably been due to some natural changes in the herbour, like the formation of a bar in the Bhavnagar Creek, about which a reference was made already in a previous Report (Technical Report 1947, Part III) while discussing the accuracy of predictions for this port. The value of Z_{0} has also changed considerably at this port. A proposal is now in hand to instal an automatic tide-gauge in the main stream, outside the entrance of the Creek, and obtain systematic observations for a period of not less than a year for purposes of intensive analysis and derivation of fresh constants for future standard predictions for the port.

The comparisons at Mandvi show that the "inferred" constants for this port published in the Admiralty Tide-Tables Part II, are not good enough. These "inferred" constants can now be replaced by the more reliable constants as derived from the new observations.

The observations cerried out at Navlakhi and Naviwat during the last season bave not yet been analysed. Their results will be published in the next Technical Report.

At the request of the Kandla Port authorities, the harmonio analysis of two series of 29 days' observations taken at the Port during 1949, was also carried out by the Admiralty method. The constants derived were used in the preparation of tidal predictions for the port for 1949-50 that were required to be supplied in connection with the port's development project. The mean values of the
constants obtained from the two series are given in Table $\mathbf{l}(b)$. The old constants published in the Admiralty and Indian Ocean Tide-Tables Part II are also included in the Table for comparison. The agreement is very satisfactory.

Some data of 15 and 29 days' observations, executed by the Marine Survey Department in the course of their Hydrographic Surveys, have also been analysed. The constants derived from these observations are tabulated in Table $1(c)$.

An important request for the special harmonic analysis of short period observations at the Saugor sandheads (about 40 miles seaward of Saugor at the mouth of the Hooghly River) has been received from the Calcutta Port Commissioners, and this analysis is now in progress. The results are to be used for the preparation of tidal predictions for Lower Saugor which have been asked for by the Central Waterways Irrigation and Navigation Research Station, Poona, in connection with the construction of a tidel model for the Hooghly River.
42. Tide-Tables.-During the year under report, the preparation of the annual Tide-Tables for the Indian Ocean ports for 1950 was completed and that for the years 1951 and 1952 was continued. Preliminary computations for the tidal predictions for 1953 were also taken up.

The "Tide-Tables of the Indian Ocean 1950" and the separate pamphlets for Bombay and the Rangoon River for the year 1950 were published in the month of August. The tidal pamphlet for the Hooghly River was published in November.

The Tide-Tables relating to the year 1951 are now in the press in various stages of printing. Proofs of predictions for 52 ports (out of a total of 67 that are to be included in the Tide-Tables of the Indian Ocean) have already been examined and passed for printing.

Advance tidal predictions for 17 ports for the year 1951 were despatched (in accordance with the standing arrangements for exchange of official predictions between nations) to the Hydrographic Departments of Britain, the United States and Portugal, in August 1949. Advance predictions for 3 ports for 1951 were also supplied, as usual, to the Royal Indian Navy, during the same month.

Also, special predictions for Kandla port for the latter part of the year 1949 and for the full year 1950 were prepared and supplied to the port authorities on payment.

The total realization from the sale of Tide-Tables (exclusive of the Agents' Commission) during the year under report amounted to Rs. $5,299 / 13 /$-. The sum received up-to-date on account of paid for work done during the year, as well as the Royalties amounted to Rs. 1,850/-
43. Corrections to Predictions.-Empirical corrections, based on the observations of recent years in each cese, were as before, applied to the 1952 predictions for Karachi, Navlakhi, Bhavnagar, Bombay (A.B.), Vizagapatam, Chandbali and Rangoon. The
corrections were the seme as those applied to the 1951 predictions (see Technical Report 1948, Part III), except in the case of Vizagapatam and Rangoon where the values were slightly revised. These revised values for Vizagapatam and Rangoon are given in Tables 2 and 3 respectively.

In respect of Dublat (Saugor) and Kidderpore, the empirical corrections for the 1952 predictions were worked out as before, but were not applied. The intention is to change the entire method of prediotions for the above ports, commencing with the 1952 TideTables and use modern (1948) observations for the revised method. These empirical corrections are, therefore, not reproduced in this report.
44. Accuracy of Predictions.-Tables 4-11 give details of the discrepancies between the predicted and observed tides, during the year 1949, at the ports at which "actuals" were observed, and Table 12 gives the greatest errors in the predicted heights of low waters at these ports during the same year. It may be observed that, in general, the quality of the predictions has remained practioally the same as in the previous years in each case.

The case of the Hooghly River ports, viz., Calcutta, Diamond Harbour and Saugor, requires special mention. From a recent levelling (1949) along the river banks, it has appeared that the tidal bench-marks of reference at these stations had all undergone considerable changes in their accepted heights due either to individual and/or regional subsidence or to local faulty levelling. The gauges having been set in relation to these faulty bench-marks, the recorded "actuals" have been wrong for some years. The figures tabulated in Tables 8-10 are thus burdened with inaccuracies from this source and should not be regarded as merely representing errors in the predictions.

For the ($\mathrm{P}-\mathrm{A}$) discrepancies to present a true state of affairs regarding the quality of the predictions, the importance of preserving the reference bench-mark and of keeping timely track of any alteration in its height by periodical check-levelling, cannot be over emphasized. In addition the zeros of the respective gauges should, of course, be kept adjusted to the reference benoh-marks throughout.
45. Prediction Methods.-With a view to overbauling the older methods of tidal prediction and analysis followed in the Department especially those relating to riverain ports, Mr. A. N. Ramanathan, Deputy Superintending Surveyor, was sent on deputation abroad to undergo a course of advanced studies at the Liverpool Observatory and Tidal Institute, Birkenhead. He proceeded early in January 1950 and is expected to be baok by the middle of May. Soon after his return it is proposed to take up the introduction, by gradual stages, of modern improved methods in all our.future analysis and prediction work with a' view to sohieving maximum possible acouraoy in our Tide-Tables..

The Liverpool method of reverain predictions has already been outlined briefly in the last year's Technical Report. The analysis for the harmonic shallow water constituent for Rangoon is being completed by Mr. Ramanathan at Liverpool and also among other things the special methods of analysis and predictions that are proposed to be followed in the case of the Hooghly River ports are being studied by him.

The following is a list of the methods that will be adopted for the Hooghly ports, viz., Saugor, Diamond Harbour and Kidderpore. The observed data proposed to be used for the analysis are those of the year 1948 for each of these ports. In the final results of the analysis, due allowance will be made for ohanges in datums and subsidence of bench-marks.
(a) Saugor:
(i) Carry out a normal Harmonic analysis for primary constituents (as for an open sea port) by Liverpool Institute's intensive method.
(ii) Using as many of the above components as the machine provides, obtain the "primary" prediction for the port for the same year (1948) and obtain the ($\mathrm{P}-\mathrm{A}$) differences.
(iii) Analyse these ($\mathrm{P}-\mathrm{A}$) difference for harmonic shallow water constituents. If the residuals, after the first H.S.W.C. analysis, are large, analyse these residuals for a second approximation. Combine the first and second approximation results and obtain the final set of H.S.W.C.
(iv) For predicting any future year, obtain the primary prediction for that year from the maohine using the normal constituents as used in (ii) above, and to this apply the shallow water corrections that will be obtained separately from the machine by special methods and improvisations.
(b) Diamond Harbour :-
(i) Using the primary prediotions for Saugor for 1948 as in (a) (ii) above, obtain the differences between these Saugor predictions and the observations at Diamond Harbour for the year 1948.
These differences are bound to be large because of the time interval and height differences between the tidal oocurrences at the two ports, and in order to reduce the size of these differenoes for any easy analysis, it might be necessary to apply some suitable time and height correotions every month or fortnight
(or even more often) to the Saugor basic predictions to get a first approximation to the Diamond Harbour predictions and then take out the differences between the thus obtained values and the Diamond Harbour "actuals" for further analysis.
(ii) Analyse these differences for H.S.W.C. as in (a) (iii) above and obtain the H.S.W.C. constants :
(iii) For predicting for any future year, obtain the Saugor primary predictions for that year as in (a) (ii), and then apply the same corrections as were used vide (b) (i) sub-para above, to obtain basic first approximation predictions for Diamond Harbour. To these will be applied the shallow water corrections- that will be obtained separately from the machine by using the H.S.W.C. constants derived in (b) (ii) above.
(c) Kidderpore:-
The procedure in this case is exactly similar to that of Diamond Harbour. The primary predictions, here again, are those of the deep water tides at Saugor, and corrections are made to these Saugor basic predictions to obtain the required predictions at Kidderpore.
It is hoped to introduce the above methods for the Hooghly River predictions, commencing with the 1952 Tide-Tables.
46. Miscellaneous.-Though the tide-predicting maohine has remained in working order throughout the year, it has been giving some errors due to the worn-out crank pins and slots in the T-pieces. In addition, the gear wheel of the M_{6} component happened to go out of order due to its wear, causing slight inaccuracies in some prediction curves. Aotion is in hand to effect the necessary repairs to the worn-out parts as early as possible.
TABLE 1(a).-Harmonic Tidal constants derived from 29 days' observations

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{Flece and position (with deacriptlon of the Tide-pole alte)} \& \multirow[t]{2}{*}{Period
and central
day of
obearva-
Lons} \& \multicolumn{2}{|l|}{Level of Zero of Tide-pole below} \& \multirow[t]{2}{*}{Harmonle Constants} \& \multicolumn{9}{|l|}{Constituents} \& \multirow[t]{2}{*}{Z (Helght of local MSL above chart datums)} \& \multirow[t]{2}{*}{Description of H.M. of reference} \\
\hline \& \& \& Chart daturn (or (dletions) \& B.M of teference \& \& \(M_{3}\) \& S, \& \(\mathrm{N}_{2}\) \& \(\mathrm{K}_{\mathbf{a}}\) \& \(\mathbf{K}_{1}\) \& \(O_{1}\) \& \(\mathrm{P}_{1}\) \& \(\mathbf{M r}_{4}\) \& MS. \& \& \\
\hline \multirow[t]{3}{*}{1} \& \multirow[t]{3}{*}{\begin{tabular}{l}
PORt Okha* \\
Lat. \(22^{\circ} 28^{\prime}\) N. ; \\
Long. \(69^{\circ} 00^{\prime}\) R. (about 100 gerds SE. of the old tidegruge alte)
\end{tabular}} \& \multirow[t]{2}{*}{20 dayl} \& \multirow[t]{2}{*}{Soed} \& \multirow[t]{2}{*}{feat} \& \multicolumn{10}{|l|}{Indian Standard Time (OSh 30m fart on G.M.T.)} \& \multirow[t]{2}{*}{fead

8.67} \&

\hline \& \& \& \& \& \& 3.68
008 \& 1.10
041 \& 0.86
343 \& ${ }_{0}^{0.32}$ \& 1.43
068 \& 0.70

085 \& $$
\begin{gathered}
0.42 \\
088
\end{gathered}
$$ \& 0.12

160 \& 0.04

173 \& \& | Q.T.S. umbedded |
| :--- |
| B. M in masonry |
| A a rallway |
| Blding Inside the Yort |

\hline \& \& 12-11-48 \& $8 \cdot 00$ \& $21 \cdot 14$ \& \& 9.64 01 \& $1 \cdot 10$
0.40 \& 0.94
940 \& $0-80$
0.40 \& 1.97
064 \& 0.65 \& 0 \& 0.11
108 \& 0.02 \& 0.84† \& yards south of the gate opeaing to the Indian Resthouse compound.

\hline \multirow[t]{2}{*}{2} \& | Porbandar* |
| :--- |
| Lat. $21^{\circ} 98^{\prime} \mathrm{N}_{\text {. }}$; |
| Long. $89^{\circ} 37^{\circ} \mathrm{E}$. |
| (at Asmavathl |
| Ghat near Shlva |
| Temple and at the |
| bend of the Creek) | \& 29 days \& \& \& \& $2 \cdot 13$

913 \& 0.78
948 \& 0.51
293 \& ${ }_{5}^{0.21} 8$ \& 1.10
058 \& 0.57

059 \& $$
\begin{array}{|c}
0.94 \\
058
\end{array}
$$ \& ${ }_{0}^{0.09} 104$ \& 0.02

250 \& $5 \cdot 02$ \& Marine Survey B.M. $\overline{\neq}$ cut on the south face of the sen wall.

\hline \& bend of the Creek) \& 30-1-40 \& 2.96 \& 24.75 \& ${ }^{\text {Newr }} 1049$ \& $\underset{912}{2 \cdot 18}$ \& 0.78
350 \& 0.52
288 \& 0.22

950 \& $$
\begin{array}{r}
1.37 \\
058
\end{array}
$$ \& 0.58

054 \& 0.45
058 \& 0.02 \& 0.02
820 \& $5 \cdot 07 \dagger$ \&

\hline \multirow[t]{2}{*}{${ }^{3}$} \& bhaptagar* Lat. $21^{\circ}{ }^{4} 8^{\prime} \mathrm{N}$. : Long. $7^{\circ}{ }^{\circ} 09^{\prime} \mathrm{E}$. (sboat 10 foet \& 29 days \& \& \& \& 11.04 \& \[
$$
\begin{aligned}
& \mathbf{3 . 5 1} \\
& 197
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
2.44 \\
126
\end{array}
$$

\] \& \[

$$
\begin{gathered}
0.87 \\
198
\end{gathered}
$$

\] \& \[

$$
\begin{array}{r}
2.34 \\
101
\end{array}
$$

\] \& \[

$$
\begin{gathered}
0.08 \\
080
\end{gathered}
$$

\] \& \[

$$
\begin{array}{r}
0.68 \\
105
\end{array}
$$
\] \& ${ }^{0} 188$ \& 0.66

232 \& 10.74 \& Q.T.S. a dressed $\begin{array}{ll}\text { B.M stone } \\ \text { yards } & \text { SW. } \\ \text { SW. }\end{array}$

\hline \& north of the
tlde-gange alta) \& 4-8-49 \& $0 \cdot 07$ \& 40.50 \& \& 10.25 \& 3.20
180 \& 2.45

117 \& $$
\begin{gathered}
0.86 \\
100
\end{gathered}
$$ \& 2.54

000 \& 2 10

070 \& $$
\begin{gathered}
0.84 \\
000
\end{gathered}
$$ \& 0.08

100 \& 0.68
237 \& 20-47t \& of the alte of the old tlde-gaugo observatory, sltuated near the Stenm Ferry lacllne.

\hline \multirow[t]{2}{*}{-} \& | Mandit |
| :--- |
| Let. $22^{\circ} 60^{\prime} \mathrm{N}$. ; Long $68^{\circ} 21^{\circ} \mathrm{E}$. (at the south end of the breals water pler) | \& 29 daya \& \& Untrown \& \& 45 \& 1.6

084 \& \& \& ${ }_{0}^{1.4}$ \& $$
0 \cdot 7
$$ \& , \& \& \& 8.57 \& Iron base of beacon at end of breali water, chart datum belng 20.00 ft . below thle base.

\hline \& \& 12-12-48 \& $1 \cdot 30$ \& 23-87 \& \& $4{ }^{4} 089$ \& 1.16

079 \& $$
\begin{gathered}
0.84 \\
010
\end{gathered}
$$ \& \[

$$
\begin{gathered}
0.82 \\
070
\end{gathered}
$$

\] \& \[

$$
\begin{array}{r}
1.40 \\
075 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
0.72 \\
\mathbf{0 7 0}
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
0.48 \\
0.75
\end{array}
$$
\] \& 0.14

293 \& $$
\begin{array}{r}
0.08 \\
278
\end{array}
$$ \& 8.5! \& Mark T, sltuated on the sw. 日lde of the south verandah of the customis.

\hline
\end{tabular}

TABLE 1(b).-Harmonic Tidal constants derived from 29 days' observations

	Pisco and poattion (with deacription of (the	Perlodand Central obsaerva. thon	Loval of Zero of Tide-pole below		Earmonic Comtant	Consutuents										Descriptlon of B.M. of reference
${ }_{8}{ }^{\circ}$			Chart determ (or Zero of pre dictiona $)$	B.M. of raference		M_{2}	S_{3}	N_{3}	$\underline{4}$	E_{1}	O_{1}	P_{1}	M.	Ms,		
1			seat	Jeat	$\left\{\begin{array}{c} \text { Old } \\ \left\{\begin{array}{l} 1030 \\ g_{0} \\ g^{\circ} \mathrm{ft.} \end{array}\right. \\ \hline \end{array}\right.$	Indian Slandard Timo (O5h 30m fart on G.L.T.)									seat	Cot on the top of the south wall or pier.
		$\begin{aligned} & 29 \text { dayl } \\ & 15-11-90 \end{aligned}$..	.		$\left\lvert\, \begin{gathered} 7.05 \\ 062 \end{gathered}\right.$	$\begin{array}{r} 2 \cdot 40 \\ 111 \end{array}$	$\begin{gathered} 1.50 \\ 0.58 \\ 0.8 \end{gathered}$	${ }^{0.65}$	$\begin{gathered} 1: 65 \\ 0.66 \\ 0 . \end{gathered}$	$\begin{gathered} 0.76 \\ 076 \\ \hline \end{gathered}$	${ }_{0}^{0.48}$	${ }^{0-43}$	${ }_{0}^{0.93}$	12.80	
	(At Kandle Timber Jetty)		0.00	20.89		$\begin{gathered} 7.44 \\ 0.45 \end{gathered}$	$\begin{array}{\|l} 2.29 \\ 108 \end{array}$	${ }_{0}^{1.67}$	${ }^{0.62}$	1.66 09	$\begin{gathered} 0 \cdot 73 \\ 074 \end{gathered}$	${ }_{0}^{0.55}$	O-44	${ }_{049}^{0.92}$	12.94*	

TABLE l(e).-Harmonic Tidal constants derived from 15 or 29 days' observations

TABLE 2.-Corrections applied to the predicted times and heights at Vizagapatam for 1952

The correotione have been baged on (P - A) differenoes of the yeare 1045-49.

TABLE 3.-Corrections applied to the predicted times and heights at Rangoon for 1952

Month		H.W.		L.W.	
		Time \min.	Height f f.	Time \min.	Height ft.
January	\cdots	-20	0.0	0	$0 \cdot 0$
February	\cdots	-16	$0 \cdot 0$	0	-0.2
March		-14	$0 \cdot 2$	-8	-0.2
April	\cdots	-18	0.2	- 14	-0.2
May	.	-18	$0 \cdot 2$	-16	-0.2
June	.	-20	$0 \cdot 2$	-23	$0 \cdot 1$
Jaly	\cdots	- 25	0.2	-28	-0.2
Augast	\cdots	- 30	0.2	-22	- 0.4
September	\cdots	-28	0.0	-18	-0.5
Ootober	.	-24	0.0	$-\theta$	-0.3
November	\cdots	-19	0.0	-2	-0.2
December	-•	- 14	0.0	6	-0.2

The oorreotions have been based on ($\mathrm{P}-\mathrm{A}$) differences of the years 1947-49.

TABLE 4.-Mean errors $E_{1}{ }^{*}$ and $E_{2}{ }^{*}$ for 1919

ADEN

* E_{1} is with regard to sign : E_{4} is without regerd to sign.
\dagger One-tenth of the mean range of the ordinary spring tides.

TABLE 5.-Mean errors $E_{1}{ }^{*}$ and $E_{2}{ }^{*}$ for 1949
BHAVNAGAR

* E_{1} is with regard to sign : E_{1} is without regard to sign.
\dagger The mean range of the greatest ordinary apring-tides is 31.5 ft .

TABLE 6.-Mean errors $E_{1}{ }^{*}$ and $E_{2}{ }^{*}$ for 1949
bombay (apollo bandar)

- E_{1} is with regard to sign : E_{1} is without regard to aign.

TABLE 7.-Mean errors $E_{1}{ }^{*}$ and $E_{2}{ }^{*}$ for 1949

VIZAGAPATAM

${ }^{*} E_{1}$ is with regard to sign : E_{m} is without regard to aign.
\dagger One-tenth of the mean range of the ordinary spring-tides.

TABLE 8.-Mean errors $E_{1}{ }^{*}$ and $E_{2}{ }^{*}$ for 1949
OALCUTTA ($\operatorname{midderporf\text {)}}$

- E_{1} is with regard to sign : E_{1} is without regard to sign.

TABLE 9.-Mean errors $E_{1}{ }^{*}$ and $E_{2}{ }^{*}$ for 1949
DIAMOND HARBOUR

$\begin{gathered} \text { PERIOD } \\ 1040 \end{gathered}$	MEAN ERRORS (Predleted-Actual)												Number of errors enceeding			
															$\begin{gathered} 1 \cdot 0 \\ \operatorname{lea}_{n} \text { in inh } \\ \text { helght } \end{gathered}$	
	\mathbf{E}_{1}								E_{5}							
		$\text { H. } \mathrm{F} \text {. }$	Helght		$\text { Time }{ }^{\text {L.W. }} \text { Helght }$				$\underset{\text { Tlme }}{\text { H. }}$		$\stackrel{\text { L. W. }}{\text { Time }}$		安	$\underset{i}{\dot{H}}$	宊	-
	min	ues	dea		min	\%	rea		minutes	seat	minutes	seat				
	+	-	+	-	+	-		-								
Jan. 1-15	2.0			0.0	15.9			0.1	10.7	0.6	16.1	0.6	0	4	5	2
10-31		5.0		0.7	$4 \cdot 6$			0.6	10.5	0.7	$9 \cdot 1$	0.0	0	0	0	13
Feb. 1-15	1.4			0.8	$13 \cdot 1$			0.6	$7 \cdot 4$	0.8	15.5	0.7	1	5	0	-
10-28		6-6		0.8	4.5			0.6	14.8	1.0	8.1	0.7	1	1	11	5
Mar. 1-15		2.5		0.7	$0 \cdot 6$			0.6	11.5	0.8	14.9	0.6	1	2	f	
10-31		12.8		0.7	1.7			0.5	21.6	0.7	$10 \cdot 6$	0.7	B	1	7	2
April 1-15	0.7			$1 \cdot 1$		2.6		0.4	14.7	$1 \cdot 1$	16.7	0.5	2	4	14	2
10-90		$7 \cdot 1$		1.6	14.6			0.6	13.2	$1 \cdot 5$	18.1	0.6	1	4	21	3
May 1-15	1.4			1.5	$0 \cdot 1$			0.8	19.4	1.5	17.3	0.8	4	4	10	8
10-31		10.9		1.0	13.9			0.6	13.8	$1 \cdot 0$	18.2	0.8	2	3	11	5
June 1-16		15.0		0.8		8.0		0.7	15.7	0.8	12.7	0.8	2	2	7	8
10-30		14.3		0.7	2.7			0.5	16.7	0.7	11.2	0.6	4	0	10	3
July 1-15		8.2		0.8		$0 \cdot 3$		0.7	12.2	0.7	14.2	$0 \cdot 8$	2	1	5	8
10-31		0.0	0.1		6.5			0.6	11.1	0.4	10.2	0.6	0	2	4	${ }^{8}$
Ang. 1-15	+ 2			0.2	10.8			0.4	$7 \cdot 7$	0.3	19.6	0.6	0	6	1	3
10-91	2-9			0.0	$0 \cdot 6$			0.6	12.4	0.6	16.5	0.8	1	4	4	2
Sept. 1-15		1.0		0.4	20.4			0.4	8.2	0.6	21.4	0.6	0	8	9	1
10-90	0.5			0.6	16.6			1.0	19.9	$0 \cdot 6$	18.9	1.0	0	4	8	13
Oct. 1-15		8. 1		0.7	17.8			$0 \cdot 6$	14.0	$0 \cdot 8$	21.1	0.6	4	θ	θ	3
10-31		0.0		0.8	$11 \cdot 6$			$1 \cdot 1$	11.0	0.8	17.5	1.1	1	4	0	14
Nov. 1-16		$5 \cdot 4$		0.8	13.8			0.4	$9 \cdot 9$	0.8	14.6	0.6	0	3	8	2
16-30		3.3		0.8	$8 \cdot 2$			0.9	$7 \cdot 9$	0.8	18.8	0.9	0	2	g	15
Deo. 1-15		$2 \cdot 8$		0.8	11.9			0.6	8.0	0.6	15.5	0.8	0	0	8	8
10-31		$2 \cdot 8$		0.4	10•0			0.8	8.5	0.6	14.6	0.0	0	4	1	13
totals	12.5	$110 \cdot 0$	$0 \cdot 1$	16-9	$232 \cdot 0$	$10 \cdot 8$		14.3	288.6	18.7	361.7	$17 \cdot 1$	32	73	108	153
Miana ..		$4 \cdot 1$	-	0.7	+	9.2	-	0.6	11.0	$0 \cdot 8$	15.1	0.7				

* E_{1} is with regard to sign : E_{2} is without regard to sign.

TABLE 10.—Mean errors $E_{1}{ }^{*}$ and $E_{2}{ }^{*}$ for 1949
saugor (deblat)

$\begin{gathered} \text { PERIOD } \\ 1049 \end{gathered}$	MEAN ERRORS (Predicted - Actual)											Number of errorg exceeding			
												90minuess In tlme			
	E_{1}							E ${ }^{\text {a }}$						$\begin{aligned} & 1 \cdot 0 \\ & \text { feed in } \\ & \text { helyht } \end{aligned}$	
	$\text { Tlme }{ }^{\text {H.W. Height }}$			$\text { Tlme }{ }^{\text {L.W. }} \text { Helght }$				$\underset{\text { Tlme }}{\text { H.W. }} \text { Ht. }$		${ }_{\text {TIme }}^{\text {L.W. }} \text { Ht. }$		涼	守	E	-
	minutes	seet		minutes		seet		minutes	feat	minules	feet				
	$+1-$	+	-	$+$	_	$+$									
Jan. 1-16	$0 \cdot 3$		0.1		0.3	0.3		6.7	0.3	0.4	0.4	0	0	0	0
26-31	8.0		0.2		3.8		0.1	8.3	0.3	7.1	0.5	0	0	0	2
Feb. 1-15	0.3		0.2		0.4		0.1	88	0.4	9.4	0.2	0	1	0	0
10-28	6.1		0.1		5.5	$0 \cdot 1$		7.0	0.5	$8 \cdot 2$	0.4	0	1	2	0
Mar. 1-15	0.0		0.2	$1 \cdot 3$			0.0	10.2	0.3	7.7	0.3	1	1	0	0
16-31	11.9		0.1		9.5		0.1	14.4	0.2	13.7	0.4	4	1	0	3
Aprll 1-15	2.8		0.4		$8 \cdot 7$		0.0	11.9	0.4	17.7	0.4	1	2	0	0
16-30	$5 \cdot 2$		0.0	$3 \cdot 2$			0.4	0.1	0.0	11.5	0.4	1	1	12	0
May 1-15	3.4		0.8		4.4		0.0	13.3	0.8	13.1	0.6	1	1	12	7
10-31	$4 \cdot 1$		0.4		1.5		0.2	$10 \cdot 7$	0.5	9. 5	0.8	1	0	4	0
June 1-15	4.9		0.4		6.0		0.4	0.2	0.4	$0 \cdot 0$	0.5	0	0	2	0
10-30	6.1		0.0		2.9	0.1		10.7	0.3	0.3	0.3	0	0	0	0
July 1-15	0.2		0.2		0.7		0.5	$8 \cdot 8$	0.4	8.8	0.5	0	0	0	4
10-91	3.2	0.4		1.0			0.0	$\theta \cdot 0$	0.6	9.8	0.5	0	1	1	5
Ang. 1-15	$3 \cdot 2$	0.1		6.1			0.0	9.4	0.2	10.2	0.4	1	0	0	0
10-31	2.1	0.4			4.0	0.1		11.0	0.6	$13 \cdot 6$	0.4	1	3	3	0
Sept. 1-15	0. 1	0.1			0.0	$0 \cdot 1$		9.1	0.4	7.2	0.4	0	0	1	1
0-30	3.5	0.1			$7 \cdot 8$		0.3	12.0	0.4	13.8	0.4	2	2	0	1
Oct. 1-15	7.9		0.1		2.5		0.0	15.9	0.4	$12 \cdot 1$	0.4	4	3	0	0
10-31	$4 \cdot 2$		0.5		6. 2		0.7	14.4	0.5	10.8	0.7	1	0	4	13
Nov. 1-15	8. 1		0.7		3. 1		0.4	9.7	0.7	0.2	0.5	0	0	4	3
10-30	10.0		0.5		8.8		0.8	11.1	0.6	10.3	0.8	1	0	-	θ
Dec. 1-15	9.1		0.5		4.0		0.5	9.6	0.6	8.3	0.6	0	0	4	1
10-31	$4 \cdot 8$		0.3		1.5		0.7	$0 \cdot 5$	0.4	10.7	0.7	0	0	0	5
Totals	8.2 124.1	$1 \cdot 1$	6. 6	$11 \cdot 6$	79.6	0.7	6.8	$244 \cdot 9$	10.8	$249 \cdot 3$	11.0	19	17	52	54
Mmars	-6.0	-	$0 \cdot 2$	-	2.8	-	0.2	$10 \cdot 2$	0.4	10.1	0.4				

${ }^{*} E_{1}$ is with regard to sign : E_{1} is without regard to sign.

TABLE 11.-Mean errors $E_{1}{ }^{*}$ and $E_{2}{ }^{*}$ for 1949
rangoon

* E_{1} is with regard to sign : E_{1} is without regard to sign.

TABLE 12.-Greatest differences between the predicted and actual heights of Low Water during 1949

Port	Predicted minus actual	Dete	Remanis
Aden Bhavnagar	$\begin{array}{r} -0.8 \\ -2.8 \end{array}$	September 20 and 21 July 27 and Ootober 24	A bar has formed in the ohannel which obstructs the flow of water to the Tide-pole, theroby aflecting all tides below 9 ft . The mean range of the ordinary apring tides at this port is 31.5 ft .
$\underset{\text { Bombay }}{\text { (Apollo Bandar) }}$	-1.2	July 20	
Vizagapatam	-1.7	October 27	
Calcutta (Kidderpore)	$-2 \cdot 1$	November 1	Riverain port.
Diamond Harbour. .	$-2 \cdot 2$	October 28	Do.
Dublat (Saugor) ..	-2.0	Ootober 28	Do.
Rengoon (Monkey Point)	$-2 \cdot 1$	April 23	Do. Tidal registrations are at Monkey Point about $1 \frac{1}{1}$ miles down the river.

Chapter VI

OBSERVATORIES

by B. L. Golatee, m.a. (cantab.), f.r.i.c.s., m.i.s. (indla)

47. Standards of Length. - The length of the 4 -metre invar bar has been determined in terms of the 1 -metre nickel bar, and 8 invar wires have been standardized in the 24 -metre comparator in preparation for geodetic base measurement in Kutch. The bars and wires have maintained their previous lengths very satisfactorily. Details of the observations are given below. The observers were Messrs. V. P. Sharma and A. K. Bhattacharjee.

The 4-metre invar bar has been measured in 4 sections which are reduced to a common temperature of $24^{\circ} \cdot 3 \mathrm{C}$. This bar has three sets of graduations on it-one on its edge A, the other on edge B and the third on Baros plugs in the centre. The details of comparison with the 1 -metre nickel bar are given below.
(a) Invar 4-m (Baros plugs) minus Nickel 1-m.—
First metre (0 to 1) of invar bar.

Date	Temperature	A. K. B.	V.P.S.
17-10-40	$\begin{aligned} & \mathrm{T}_{1}=23^{\circ} \cdot 66 \mathrm{C} \\ & \mathrm{~T}_{\mathrm{N}}=23^{\circ} \cdot 68 \mathrm{C} \end{aligned}$	$\begin{gathered} -0.2550 \mathrm{~mm} . \\ .2541 \\ .2546 \\ .2572 \\ .2543 \\ .2502 \\ .2507 \\ .2515 \end{gathered}$	$\begin{gathered} -0 \cdot 2554 \mathrm{~mm} . \\ .2652 \\ .2543 \\ .2568 \\ .2552 \\ .2495 \\ .2518 \\ .2628 \end{gathered}$
	Mean	-0.2635 mm.	-0.2539 mm.

Reputed length of nickel at $23^{\circ} \cdot 66 \mathrm{C}=1 \mathrm{~m} .+0 \cdot 3126 \mathrm{~mm}$. (derived from N.P.L. certificste 1947)

Observed invar minus nickel
\therefore Length of invar at $23^{\circ} \cdot 66 \mathrm{C}$
$=\quad-0.2537 \mathrm{~mm}$.
$=1 \mathrm{~m} .+0.0589 \mathrm{~mm}$.

The expansion equation of invar is
$\mathrm{L}_{\mathrm{t}}=\mathrm{L}_{0}\left(1+0.000001450 \mathrm{t}-0.0000000005 \mathrm{t}^{2}\right)$
which gives the length of this section of the invar bar at $24^{\circ} \cdot 3$ to be $=1 \mathrm{~m} .+0.0598 \mathrm{~mm}$.

Second metre (1 to 2) of invar bar.

Date	Temperaturo	A. K. B.	V. P. S.
10-10-49	$\begin{aligned} & \mathrm{T}_{1}=23^{\circ} \cdot 82 \mathrm{C} \\ & \mathrm{~T}_{\mathrm{N}}=23^{\circ} \cdot 80 \mathrm{C} \end{aligned}$	$\begin{gathered} -0 \cdot 2623 \mathrm{~mm} . \\ \cdot 2618 \\ .2047 \\ .2619 \\ .2661 \\ .2637 \\ .2660 \\ .2053 \end{gathered}$	$\begin{gathered} -0 \cdot 2823 \mathrm{~mm} . \\ \cdot 2621 \\ \cdot 2682 \\ \cdot 2636 \\ .2680 \\ \cdot 2640 \\ \cdot 2658 \\ .2641 \end{gathered}$
	Mean	-0.2640 mm.	-0.2642 mm.
Reputed length of nickel $\quad=1 \mathrm{~m}$. +0.3144 mm .			
Observed invar minus nickel $\quad=\quad-0.2641 \mathrm{~mm}$.			
Length of the invar at $23^{\circ} \cdot 82 \mathrm{C}=1 \mathrm{~m} .+0.0503 \mathrm{~mm}$.			
\therefore Length of the invar at $24^{\circ} \cdot 3 \mathrm{C}=1 \mathrm{~m} .+0.0510 \mathrm{~mm}$.			

Third metre (2 to 3) of invar bar.

Date	Temperature	A. K. B.	V. P. S.
15-10-49	$\begin{aligned} & \mathrm{T}_{1}=23^{\circ} \cdot 66 \mathrm{C} \\ & \mathrm{TN}=23^{\circ} \cdot 64 \mathrm{C} \end{aligned}$	$\begin{gathered} -0 \cdot 2593 \mathrm{~mm} . \\ \cdot 2614 \\ \cdot 2641 \\ .2637 \\ \cdot 2628 \\ .2604 \\ .2601 \\ .2616 \end{gathered}$	$\begin{gathered} -0.2697 \mathrm{~mm} . \\ .2614 \\ .2633 \\ .2622 \\ .2638 \\ .2601 \\ .2607 \\ .2631 \end{gathered}$
	Mean	-0.2617 mm.	-0.2818 mm.
Reputed length of nickel $=1 \mathrm{~m} .+0.3123 \mathrm{~mm}$. Observed invar minus nickel $=1$ Length of the invar at $23^{\circ} \cdot 66 \mathrm{C}$ $=1 \mathrm{~m} .+0.2617 \mathrm{~mm}$. Length of invar at $24^{\circ} \cdot 3 \mathrm{C}$ $=1 \mathrm{~m} .+0.0506 \mathrm{~mm}$.			

Fourth metre (3 to 4) of invar bar.

Date	Temperature	A. K. B.	V. P. S.
14-10-49	$\begin{aligned} & \mathbf{T}_{\mathbf{1}}=23^{\circ} \cdot 30 \mathrm{C} \\ & \mathbf{T}_{\mathbf{N}}=23^{\circ} \cdot 28 \mathrm{C} \end{aligned}$	$\begin{array}{r} -0 \cdot 2523 \mathrm{~mm} . \\ \cdot 2531 \\ \cdot 2503 \\ .2524 \\ .2537 \\ .2532 \\ .2525 \\ . \\ .2550 \end{array}$	$\begin{gathered} -0.2521 \mathrm{~mm} . \\ .2522 \\ .2523 \\ .2507 \\ .2550 \\ .2537 \\ .2530 \\ .2553 \end{gathered}$
	Mean	-0.2628 mm.	-0.2530 mm.

Reputed length of nickel $\quad=1 \mathrm{~m} .+0.3079 \mathrm{~mm}$.
Observed invar minus nickel $=\quad-0.2529 \mathrm{~mm}$.
Length of the invar at $23^{\circ} \cdot 30 \mathrm{C}=1 \mathrm{~m} .+0.0560 \mathrm{~mm}$.
\therefore Length of the invar at $24^{\circ} \cdot 3 \mathrm{C}=1 \mathrm{~m} .+0.0564 \mathrm{~mm}$.

Combining the four sections of the invar bar we get the total length of the bar (Baros plugs) as $4 \mathrm{~m} .+0.2187 \mathrm{~mm}$. at $24^{\circ} \cdot 3$ C. 1939 standardizations gave this length to be $4000 \cdot 2243$ millimetres. The bar has accordingly shortened by 0.006 mm . or $1.5 / \mathrm{M}$ in 10 years. This shows that it has more or less reached a stable condition, as in its early days, it exhibited an increase of $5 / \mathrm{M}$ in 10 years.
(b) 4-m Invar. Edge B minus Baros plugs.-

Date	A. K. B.	V.P.S.
10-10-49	$\begin{aligned} & +0.0036 \mathrm{~mm} . \\ & +.0025 \\ & +.0015 \\ & +.0008 \end{aligned}$	$\begin{aligned} & +0.0033 \mathrm{~mm} . \\ & +.0016 \\ & +.0010 \\ & -.0005 \end{aligned}$
Mean	$+0.0014 \mathrm{~mm}$ General mean	$\begin{aligned} & +0.0014 \mathrm{~mm} . \\ = & +0.0014 \mathrm{~mm} \end{aligned}$

Length of 4-m invar (Baros plugs) at
$24^{\circ} .3 \mathrm{C}=4 \mathrm{~m} .+0.2187 \mathrm{~mm}$.
Length of 4 -m invar Edge B at $24^{\circ} \cdot 3 \mathrm{C}=4 \mathrm{~m} .+0 \cdot 2201 \mathrm{~mm}$. and length of 4 -metre invar Edge B at $28^{\circ} \mathrm{C}=4 \mathrm{~m} .+0.2411 \mathrm{~mm}$.
(c) 4-m Invar. Edge B minus Edge A.-

Date	A. K. B.	V.P.S.
10-10-49	$\begin{aligned} & +0.0014 \mathrm{~mm} . \\ & \pm .0048 \\ & +.0018 \\ & +.0004 \end{aligned}$	$\begin{aligned} & +0.0021 \mathrm{~mm} . \\ & \pm .0004 \\ & -.0011 \\ & -.0005 \end{aligned}$
Mean.	+0.0013 mm . General mean	$\begin{aligned} & +0.0002 \mathrm{~mm} . \\ & +0.0008 \mathrm{~mm} . \end{aligned}$

(d) 4-m Nickel-steel minus 4 -m Invar Baros plugs.-

Date	Temperature	A. K. B.	V.P.S.
9-11-49	$\begin{aligned} & \mathrm{T}_{1}=17^{\circ} \cdot 58 \mathrm{C} \\ & \mathrm{~T}_{\mathrm{NS}}=17^{\circ} \cdot 58 \mathrm{C} \end{aligned}$	$\begin{gathered} +0 \cdot 3411 \mathrm{~mm} . \\ .3427 \\ .3452 \\ .3413 \\ .3402 \\ .3404 \\ .3385 \\ .3367 \\ .3377 \\ .3388 \end{gathered}$	$\begin{gathered} +0.3452 \mathrm{~mm} . \\ .3392 \\ .3478 \\ .3415 \\ .3383 \\ .3411 \\ .3378 \\ .3377 \\ .3366 \\ .3371 \end{gathered}$
	Mean Accepted mean	$\begin{aligned} & +0.3403 \\ & +0.3402 \mathrm{~mm} . \end{aligned}$	+0.3402

Accepted length of $4-\mathrm{m}$ invar bar at
$24^{\circ} .3 \mathrm{C} \quad=4 \mathrm{~m} .+0.2187 \mathrm{~mm}$.
Length of 4 -metre invar bar at $17^{\circ} .58 \mathrm{C}=4 \mathrm{~m} .+0.1802 \mathrm{~mm}$.
Observed nickel-steel minus invar at
$17^{\circ} .58 \mathrm{C} \quad=\quad+0.3402 \mathrm{~mm}$.
Length of $4-\mathrm{m}$ nickel-steel at $17^{\circ} \cdot 58 \mathrm{C}=4 \mathrm{~m} .+0.5204 \mathrm{~mm}$:
Coefficient of expansion of nickel-steel $=\quad+\cdot 000007,52$ per ${ }^{\circ} \mathrm{C}$.
\therefore Length of this bar at $24^{\circ} \cdot 3 \mathrm{C} \quad=4 \mathrm{~m} .+0.7225 \mathrm{~mm}$.
Its length during 1934 standardization was found to be $4 \mathrm{~m} .+0.7325 \mathrm{~mm}$. and its Reputed Length in 1914 (N.P.L. Certificate) was $4 \mathrm{~m} .+0.7423 \mathrm{~mm}$.

These figures show that the 4 -m nickel-steel has been shortening by 0.01 mm . in 20 years or at the rate of $1 / 8 \mathrm{M}$ per year.
48. Coefficients of Expansion of $\mathbf{2 4}$-metre Invar Wires.-The invar wires for geodetic base measurement were obtained a long time ago and the coefficients of expansion for some of them were determined from short samples of the wires. Previous work with them had made it abundantly clear that the coefficients as supplied by the makers were not applicable and it was essential to determine them either in the $24-\mathrm{m}$. comparator or in the field. During the Kandla base measurement, a length of 240 metres was laid on in the field on a flat bit of ground. Its ends were marked by brass plugs embedded in cement. It was meesured with all the wires in use at two different temperatures.

The following table gives the values for the coefficients as dorived in this way. For comparison the previously accepted values of 1934 have also been given. It will be seen that during these 15 years when no work has been done with them, a considerable change has occurred in their temperature coefficients. For some of the wires, even the sign has changed.

Increase in mms. per 24 metres per $1^{\circ} \mathrm{C}$.

Wire Nos.		244	247	248	252	1037
Season						
Nov. 1949	\ldots	-.0092	-.0149	-.0132	-.0138	-.0091
$1933-34$	\ldots	+.0058	-.0000	-.0028	-.0050	-0000

49. Lengths of Wires.-In the jear 1931-32, although no base was actually measured, all the wires for some unaccountable reason showed abnormal changes of length amounting in an extreme case to as much as $1 / 10,000$. During the measurement of some bases in 1932-33 also some of the wires changed by $1 / 60,000$ or so. To avoid the uncertainties caused by such large changes, the lengths of all the wires which were taken to the field were determined egainst the 24 -metre comparator at Dehra Dūn before and after the measurement of the Kandla base. In the field, daily comparisons were done with the substandard and a close watch was kept to ensure that the two wires of each pair maintained their relative length.

The length of the 24 -metre comparator was determined in October with the help of the 4 -metre Invar bar and is shown in Plate XXV.

The resulting lengths of the seven wires pre and post field season are tabulated below :-

Millimetres in excess of 24 metres at $28^{\circ} \mathrm{C}$.

Date	245	244	247	248	252	1037	1038
October	+0.99	-2.42	+1.56	+1.75	+3.19	+0.79	+0.77
Deoember	+1.05	-2.44	+1.37	$+1.67$	+3.11	+0.77	+0.81
Mean	+1.02	-2.43	+1.47	+1.71	$+3 \cdot 15$	+0.78	+0.79

It will be seen that the wires have held their lengths very satisfactorily in the field. Their mean value has been accepted for the final reduction of the base.

The largest change 0.19 mm . has been exhibited by wire No. 247. This wire was slightly kinked at one end in 1933 due to the wireman slipping while crossing a nāla, resulting in a ahortening of its length by 0.08 mm . After that it showed rather large ohanges of length. It was deliberately included this field season to see whether ill-treatment causes only temporary instability in these wires. Actual results have shown that although the wire received a maltreatment 16 years ago, it still shows not only large changes in its length butalso in its temperature coefficient (vide table in para 48). It is now being rejected for future use.

Another point, to which it is worthwhile drawing attention is that in the past, the field standards have sometimes changed muoh more then working wires. The standard wire seleoted wes No. 245.
Length of 24-metre Comparator, 1949

It was used for the comparison of substandard 1037 only four times during the field season. Neither this nor the substandard 1037 shows a markedly greater change than the working wires.
50. Magnetic Observations.-It has been known for some time that the diurnal variations of the horizontal force of the earth's magnetism are enhanced in the areas between the magnetio and geographic equators. Thus, at Kodaikanal Observatory, range is about double that at Alibag. This augmentation is of so great an interest as to warrant observations being carried out in different regions of the world near the magnetic equator. With this end in view, a Committee was convened by the International Association of Terrestrial Magnetism and Electricity at the Oslo Assembly in 1948 to promote observations of daily variation of the horizontal magnetio force between and near the geographic and magnetic equators. It put forth the scheme that observations of the range of the daily variation of H should be carried out at a series of stations about 150 km . apart lying in a north-south line outside and between the geographic and geomagnetic equators with a station of reference on the geomagnetic or on the geographic equator.

The Committee's proposal for these observations in India was considered at the meeting of the Central Board of Geophysics and it was agreed that the Geodetic Branch of the Survey of India should be entrusted with this work.

Chart XXVI shows the stations which were selected for these speoial observations. They are Guntakal, Bangalore, Tinnevelly and Galle (in Ceylon) with Kodaikanal as the reference station. Galle is off the meridian of Kodaikanal, but it was considered advisable to include it as it is situated in a latitude on which the observations should be of much value.

Three Quartz Horizontal Magnetometers Nos. 17, 18 and 32 belonging to the International Association of Terrestrial Magnetism were received in India for the purpose. A detachment consisting of Mr. S. Vaikuntanathan and 2 khaläsìs started from Dehra Dūn for field work on the 9th May and returned on the 20th August, 1950. Although the observations were made subsequent to the period covered by this report, the results have been included as they are of immediate interest. Details of observations are as follows :-

At Kodaikanal observatory which was ohosen as the reference station, simulteneous observations were made for three days both at the beginning and the olose of the field work.

To get the maximum range, observations in the field were oarried out during the periods in whioh H attains its maximum and minimum values. In Indie, the maximum usually ocours between 11-30 and 12-30 hrs., Indian standard time ($5 \frac{1}{2}$ hours ahead of Greenwioh) and the minimum occurs either in the morning between 5-45 and 7-00 hrs. or in the evening between 17-00 and 18-30 hours.

The Q.H.Ms. accordingly were observed at 3 speoified times (8,12 and 18 hours) in a day and aimultaneously, values were
observed at Kodaikanal reference station. A single observation lasted 10 to 14 minutes. The routine of observation wes to read two of the three Q.H.Ms. at a time. This involved six observations each day-three with one instrument and three with another almost immediately after it (one in the morning, one in the noon and one in the evening). A minimum of three days observations were made at each station, No. 32 being used for all the three days, No. 17 for two days and No. 18 for only one day.

The Q.H.Ms. 32 and 17 were found to agree between themselves very well while the values obtained with Q.H.M. No. I8 was always on the higher side by about 10 gammas.

The constants for the three instruments for a torsion of 2π are as follows:-
No. 17. $\mathrm{H}=9.14718-\log \sin \phi+0.000172_{5} \mathrm{t}-0.0002 \mathrm{H} \cos \phi$ No. 18. $\quad \mathrm{H}=9.15017-\log \sin \phi+0.000172 t-0.0002 \mathrm{H} \cos \phi$ No. 32. $\mathrm{H}=9.14947-\log \sin \phi+0.000160 \mathrm{t}-0.0002 \mathrm{H} \cos \phi$, where t is the temperature in degrees centigrade, ϕ is the observed deviation angle and H is the horizontal magnetic force.

The results obtained at the 5 stations are shown in Tables 1 and 2.
A scrutiny of the results reveals that as expected the ranges are maximum at Kodaikanal and Tinnevelly which are nearer to the magnetio equator than the other stations observed at. Galle and Guntakal have about the same mean range.

It is also interesting to note that the mean range at Kodaikanal deoreased by as much as 33γ in a period of a fortnight commenoing from 5th June 1950.

A comparison of columns 13 and 14 of Table 1 reveals that for Kodaikanal, the range as derived from Q.H.M. observations agrees almost perfeotly with that obtained from self-recording magnetio variometers, which is very satisfactory.

The observed ranges tabulated in this table have to be further corrected for suoh effects as the declination of the sun, sun spot numbers and the age of the moon to get the final value for the variation of the range with the geographioal latitude. This has been done at the Geographical Section of the Danish Meteorological Institute, Copenhagen under the supervision of Dr. J. Egedal.

The following table gives the final results :-
Reference station : Kodaikanal (Lat. $10^{\circ} \cdot 2 \mathrm{~N}$., Long. $77^{\circ} \cdot 5 \mathrm{E}$.)
Magnetic equator $=8^{\circ} \cdot 7 \mathrm{~N}$.; Geomagnetic equator $=9^{\circ} \cdot 7 \mathrm{~N}$.

Year	1950			
Date	July 31-Aug. 2	July 9-12	June 5-8	June 18-20
Station	Guntakal	Bangalore	Tinnevelly	Galle
Latitude	$15^{\circ} .2 \mathrm{~N}$.	$13^{\circ} .0 \mathrm{~N}$.	$8^{\circ} \cdot 7 \mathrm{~N}$.	$8^{\circ} \cdot 0 \mathrm{~N}$.
Longitude	$77^{\circ} .4 \mathrm{E}$.	$77^{\circ} .6 \mathrm{E}$.	$77^{\circ} \cdot 6 \mathrm{E}$.	$80^{\circ} .2 \mathrm{E}$.
Ratio	0.74	0.82	1.12	0.86

Printed at the Surrey of Inde Offloes.(P. Z.0.).

The observations revenled that the mean maximum range in India was 106γ as against 116γ at Huancayo and 124γ at Togoland.

One more station Mandapam (Latitude $9^{\circ} \cdot 3 \mathrm{~N}$., Longitude $79^{\circ} \cdot 1$ E.) was also observed, as it happened to be a repeat station. Although it is not located on the meridian of the stations chosen for special study, the observations on it are of interest, as it is quite close to the Magnetic Equator. Table 3 shows the results. It would be seen that the observed range of variation of H is very large and comparable to that at Tinnevelly.
51. Observations at Repeat Stations.-The three Q.H.Ms. employed for measurements in the equatorial belt were also compared with the Kew Pattern instruments in use at Dehra Dūn as well as at Alibag magnetic observatory. The results will be discussed in the next Technical Report.

In addition to the above comparisons, declination and horizontal force were observed at 9 other repeat stations, viz., Mandapam (see para 50 above), Tanjore, Perambur, Arkonam, Cannanore, Birur, Dharwar, Cumbun and Bezwada (See Chart XXVI). The revised isogonic lines south of latitude 16° drawn as a result of these observations will be given in the next Teohnicel Report.
52. Meteorological and Seismological Observations.-The usual meteorological observations at $8 \frac{1}{2} \mathrm{hrs}$. and $17 \frac{1}{2} \mathrm{hrs}$. in place of 8 hrs . and 17 hrs . have been talken throughout the year. The meteorological data for Dehre Dūn have been supplied to various local civil and military offices. The original Meteorological monthly records have been sent to the Director, Regional Meteorological Centre, New Delhi.

The Omori Seismograph was in operation throughout the year and worked satisfactorily. The earthquakes recorded at this observatory are published in the monthly Seismological Bulletin under the direction of the Director General of Observatories.
53. The Riefler Clock.-The Riefler electric clock has been functioning throughout the year. Adjustment of Shortt clook has been taken up. Renewals of Caustio Soda cells have been received. The rating of the clocks and chronometers has been done by hearing the B.B.C. time pips on an ordinary wireless receiver.
54. Test, Calibration and Repairs of Instruments.-During the period under report 358 instruments of various kinds were tested and calibrated. The calibration of Hunter Short Base tapes was carried in catenary against baye 1-6 of 24 -metre comparator. The other instruments celibrated were invar staves, standerd steel 10 -foot tape, barometers eneroids and Paulins, theodolites, levels, chronometers, watches and many other precision instruments.

Repairs to 336 surveying instruments were carried out. The instruments for repairs were, theodolites (glass arcs, verniers), levels, calculating machines, barometers, tapes, crinoline ohains,

staves, clocks, watches, chronometers, binoculars, prismatic compasses, magnetic box compasses, clinometers, stereoscopes, magnetometers, etc.
55. Miscellaneous.-
(i) Various field detachments of Geodetic and Training Circle were supplied with instruments, and equipments for the field season 1949-50.
(ii) All delicate instruments installed in observatories and store were maintained in good condition and adjustment.
(iii) Star Almanac 1951 was compiled and published.
(iv) Preliminary computations of Manaba base-line, geodetic triangulation and astrolabe work in Kutch were carried out.
(v) Practice observations were carried out in Geodetic Base measurement by young officers in Dehre Dūn and a part of City Traverse of Dehra Dūn was carried out with Invar Base measuring equipment.
(vi) Annual examination of all surveying instruments of units and detachments at the close of field work was carried out.
TABLE 1.-Diurnal variation of the Horizontal Magnetic Force derived from Q.H.M. observations.

TABLE I.—Diurnal variation of the Horizontal Magnetic Force derived from Q.H.M. observations-(concId.).

TABLE 2.-Diurnal variation of the Horizontal Magnetic Force at Kodaikanal Observatory derived

Serial No.	Date	Name of station	Latitude	Longitude	$\begin{gathered} \text { Q.H.M. } \\ \text { No. } \end{gathered}$	Values of H.F. in gammas at reference station Kodaikanal Observatory, derived from magnetograms					
						$\begin{aligned} & \text { Time } \\ & \text { I.S.T. } \end{aligned}$	H.F.	$\begin{aligned} & \text { Time } \\ & \text { I.S.T. } \end{aligned}$	H.F.	Time I.S.T.	H.F.
4			${ }^{\circ} \mathrm{E}$ 58.7	- 77 . 35.4							
	9-7-50	Bangalore	$1258 \cdot 7$	$7735 \cdot 4$	32	0636	39232	1147	39302	1738	39238
		F 0			17	0653	39237	1204	30296	1759	39238
	10-7-50				32	0610	39245	1158	39296	1800	39223
	11"-50	"			17	0625	39247	1213	39287	1816	39223
	11-7-50	"			32	0617	39249	1158	39359	1758	39268
		"			18	0636	39251	1217	39384	1813	39270
	12-7-50	"			32	0614	39251	1210	39260	1755	39198
	"	"			17	0633	39239	1228	39206	1813	39197
5	31-7-50	Guntakal	$15 \quad 10 \cdot 8$	7722.95	32	0602	39252	1156	39310	1804	38263
		"			17	0820	39253	1210	39309	1819	39263
	1-8-50	\because			32	0615	39259	1154	39329	1819	39257
		"			17	0631	39249	1210	39323	1840	39256
	2-8-50	"			32 18	0618 0635	39254 39256	1160	39330	1807	39249
	"				18	0635	39256	1207	39363	1820	39246
6	10-8-50	Kodaikanal	1013.8	77 27.7	32	0627	39233	1204	39281	1753	39220
	" 0	Observatory			17	0844	39236	1221	39307	1811	39230
	11-8-60	"			32	0824	39246	1219	39279	1803	39222
	12"8-50	"			17	O8 43	30248	1236	39284	1818	39220
	12-8-50	"			32	0623	38254	1221	39298	1806	39232
	"	"			18	0847	39239	1236	30208	1825	30239

TABLE 3.—Diurnal range of H at Mandapam* (Latitude $9^{\circ} 16^{\prime} \cdot 8$, Langitude 7907' 8)
Observations in India for the Committee to promote observations of daily variation of the Horizontal
Magnetio Force between and near the Geographical and Magnetic Equators

Date	Q.H.M.	Values of H.F. in gammas at meleotad Field Repest Stations							Values of H.F. in gammas at reference station Kodaikanal Observatory derived from Magnetograms						
		Timet I.S.T.	H.F.	Time \dagger I.S.T.	B.F.	Timet I.S.T.	H.F.			Time \dagger I.S.T.	E.F.	Timet I.S.'T.	H.F.	Time \dagger I.S.T.	H.F.
31-5-50	32 17	0828 0643	40082	1152 1210	40177 40185	1754 1814	40089 40085	123	105	$\begin{aligned} & 0826 \\ & 0843 \end{aligned}$	30327 39325	1152 1210	39430 39429	1754 1814	39339 39335
1-6-50	32	0810	40080	1139	40184	1726	40048			0810	39235	1139	39323	1726	30209
"	17	0830	40077	1200	40203	1745	40057	155	119	0630	39236	1200	39328	1745	39213
2-0-50	32	0815	40076	1151	40123	1740	40063			0815	39227	1151	39277	1740	39219
"	18	0835	40069	1209	40145	1759	40075	82	67	0835	39226	1209	39283	1759	39216
3-6-50	32	0618	40080	1152	40185	1845	40080	128	118	0618	39220	1152	39323	1645	39234
"	17	O8 38	40061	1209	40188	1700	40070	128	118	0836	38227	1209	39338	1700	39234
							Mean	122	101						

- This station is situated on the banks of the sea shore.
\dagger I.S.T. meane Indien Standard Time ($5 \mathfrak{j}$ hours abead of Greenwioh time).

Chapter VII

COMPUTATIONS AND PUBLICATIONS

by B. L. Gulatee, m.a. (cantab.), f.r.i.o.s., m.i.s. (india)
56. Adjustment of Topographical Triangulation in India.A reference was made in the previous report to the immensity of the task involved in the systematic examination, compilation and adjustment of the huge mass of topographical triangulation in India (about $3 \frac{1}{2}$ lakhs of points) and it was pointed out that the work would take 30 computers nearly 30 years to complete. Although a start has been made, the progress is likely to be seriously hampered by the lack of trained staff.

During the period under report, one pamphlet No. 54 A, covering one degree square, was completed in Block No. 1 and one pamphlet No. 47 F was prepared in Block No. 2. See Technical Report, 1948-49, Part III, para 84 and charts XXIX and XXX. Further work is in progress in these blocks.

Some preliminary compilation in $1 / \mathrm{M}$ sheets 48 and 58 hes been carried out in the Southern Circle, but the date has not yet been examined and adjusted.
57. Triangulation data in Irāq and Irān.-The triangulation data in Irāq and Irän comprises the following :-
(i) Data of the triangulation carried out by the Survey Party of the Mesopotamia Expeditionary Force of World War I in south and west Irān.
(ii) Data of primary, secondary and tertiary triangulation of the Iräq Survey Department.
(iii) Date of Paiforce triangulation, 1941-43, mostly by Indian Field Survey Companies.
(iv) Data of triangulation linking Irāq to India executed in 1944.
(∇) Date of triangulation carried out by the Anglo-Iränian Oil Company.
As already mentioned in the previous report, the data described above, some of which is on different spheroids, have all been brought into one terms by adjustment and made mutually consistent. Details of the various triangulations are given in Technical Report 1947, Part III, Chapter V.

The reotangular co-ordinates on Lambert Orthomorphic Conioal Projection of all points are being compiled in pamphlets, each pamphlet containing data falling in an area of one degree of latitude
by one degree of longitude. In cases where data is sparse a larger area has been included in one pamphlet. The details of the adjustment carried out are given in the preface to each pamphlet. Out of an estimated total of about 80 pamphlets, 22 have so far been published.
58. Computations of results of field work.-Observations of geodetic triangulation and base measurement in Kutch (see Chapter I) have been computed in the Computing Office.

Results of the following levelling lines executed during the period under report were also worked out :-
(a) Levelling of High Precision

> (i) Balasore to Howrah
> (ii) Kārwār to Hubli
> (iii) Raipur to Vizianagram and Vizianagram to Vizagapatam.
(b) Precise levelling
(i) Howrah to Purbasthali
(ii) Calcutta Mint to Cossipore
(iii) " ," ., King George's Dock.
(c) Secondary Levelling
(i) Kosi area
(ii) Gandak area
(iii) Narbada area
(iv) Kutch area
(v) Connections to Tidel stations at Navi Wat and Navlakhi.

A narrative account of these level lines and the discussion of results is given in Chapter II.

Besides the above, deflections and gravity anomalies have been computed at new stations and the charts of the Geoids (Chapter IV) and Gravity Anomalies (Chapter III) have been revised.
59. Technical Papers.-An account of the geodetio work of the Survey of India has been published from 1921 to 1940 in the annual Geodetic Reports, and since 1947 in the annual Technical Reports, the publication having been in abeyance from 1940 to 1947 due to the difficulties created by World War II. In addition to this annual account, research work carried out on specific problems or accounts of methods and processes relating to particular subjeots have been dealt within two series of papers, viz., the Professional Papers and Departmental Papers. The former were intended for wide distribution to foreiga survey institutions libraries, universities and distinguished scientists interested in the subject matter of the paper, and the latter were meant primarily for the use of the departmental officers and other Government of Indis Departments interested in the progress of the Survey of Indis.

It has unfortunately not been possible to publish any Professsional Paper ever since World War II broke out and only one Departmental Paper has been issued recently since that date.

With a view to stimulating thought and encouraging research on departmental methods and problems and to making the results of such research widely available in the department a third series of Papers known as "Technical Papers" have been initiated. The first paper of this series is entitled "Towards a National Survey" and emphasizes the need of a close liasion between the Survey of India and the State (Provincial) Survey Departments, which carry out local and cadastral surveys for revenue and settlement purposes, to avoid duplication of effort. It is recommended that all officers employed in the State Survey Departments should be Survey of India trained, that the Survey programmes of the State Survey Departments should be executed in consultation with and in accordance with the methods and technique and with the same class of instruments as are in use in the Survey of India.

The second paper "Value of Gravity at Dehra Dūn" gives the history of the various determinations of the value of gravity at Dehra Dūn which is the National Base Station for India and stresses the need for a highly precise value, since all the previous values are widely discrepant.

The third paper bears the title "Levelling in India, Past and Future". This paper brings home the fact that India is very backward as regards levelling compared with European and American countries. A chart is included which shows in striking contrast the levelling carried out in the U.S.A. and in India. The U.S.A. level net ($1936-38$) consists of more than 150,000 bench-marks distributed along about 107,000 miles of first order and 155,000 miles of second order levelling whereas the total mileage of levelling in India is less than 15,000 miles with a total of 16,000 bench-marks about 14,000 of which are of non-permanent nature. It is pointed out that it is beyond the capacity of the Survey of India to bring up the progress of levelling in India to the standard of other advanced countries and consequently the active co-operation of State Governments and the Engineering Departments in filling up the large gaps which exist is sought. To ensure uniformity it is suggested that all agencies carrying out levelling for local purposes should work in terms of the National Datum and their levelling should be tied on to the National framework of High Precision Levelling, and should be carried out to the standards of accuracy and with the class of instruments employed in the Survey of India. This appeal has since met with some response and a number of State Governments have deputed their officers for training in the Survey of India.

The fourth paper "Mount Everest-Its name and height", which has been issued after the period covered by this report throws light on a subject, whioh has been a matter of great controversy in the past and about which several misconceptions are
current to-day. The accepted height of 29,002 feet for this peak was derived from older observations which were incomplete in many respects. The Survey of India proposes to extend the triangulation to within about 40 miles of the peak so that reliable observations can be made for a precise determination of its height. Until these are carried out, the traditional value will have to be adhered to.
60. Other Publications.-The following are the other publications which were seen through the press :-

1. Technical Report 1948-49, Part III—Geodetic Work.
2. Levelling Pamphlets for $1 / M$ Sheets 65 and 74.
3. Grid data triangulation pamphlets in Irāq and Irān, six in number.
4. Spherical and grid triangulation pamphlet for sheet 73 M (at press).
5. Secondary levelling pamphlet No. 55.

LIST OF IMPORTANT GEODETIC PUBLICATIONS AND CONTRIBUTIONS BY OFFICERS OF THE SURVEY OF INDIA

(A) Publications.

No. Name of Book

1. G.T.S. Vol. II History and General Description of the Reduction of the Principal Triangulation. Dehra Dūn, $1879 . \quad$ Price Rs. 10-8.
2. G.T.S. Vol. IX Telegraphic Longitudes. During the years 1875-77 and 1880-81. Dehra Dūn, $1883 . \quad$ Price Rs. 10-8.
3. G.T.S. Vol. X Telegraphic Longitudes. During the years 1881-82, 1882-83 and 1883-84. Dehre Dūn, 1887. Price Rs. 10-8.
4. G.T.S. Vol. XI Astronomical Latitudes. During the period 1805-1885. Dehra Dūn, 1890. Price Rs. 10-8.
5. G.T.S. Vol. XV Telegraphic Longitudes. From 1885 to 1892 and the Revised Results of Vols. IX and X: also the Simultaneous Reduction and final Results of the whole Operations. Dehra Dūn, $1893 . \quad$ Price Rs. 10-8.
6. G.T.S. Vol. XVI Tidal Observations. From 1873 to 1892 and the Methods of Reduction. Dehra Dūn, $1901 . \quad$ Price Rs. 10-8.
7. G.T.S. Vol, XVII Telegraphic Longitudes. During the years 1894-95-96. The Indo-European Arcs from Karāchi to Greenwich. Dehra Dūn, 1901.

Price Rs. 10-8.
8. G.T.S. Vol. XVIII Astronomical Latitudes. From 1885 to 1905 and the deduced values of Plumbline Deflections. Dehra Dūn, 1906.

Price Rs. 10-8.
9. G.T.S. Vol. XIX Levelling of Precision in India. From 1858 to 1909. Dehre Dūn, 1910.

Price Rs. 10-8.
10. Records of the 1901-20. The Magnetic Survey, by Lt.Survey of India, Colonel R. H. Thomas, D.s.o., b.e. and Vol. XIX E.C.J. Bond, v.D. Dehra Dün, 1925. Price Rs. 4.

No. Name of Book
11. Geodetic Report Vol. I
12. Geodetic Report Vol. II
13. Geodetic Report Vol. III
14. Geodetio Report Vol. IV
15. Geodetic Report Vol. V
16. Geodetic Report Vol. VI
17. Geodetio Report Vol. VII

Details

1922-25. Computations and Research. Tidal work. Time and Magnetio observations. Latitude and Pendulum observations in Bihār, Assam and Kashmir. Levelling. Lecture on "The height of Mount Everest and other Peaks". Dehra Dūn, $1928 . \quad$ Price Rs. 6.
1925-26. Computations and Researoh. Tidal work. Time and Magnetic observations. Preparations for the International Longitude Project. Triangulation. Levelling. Investigation of the behaviour of tree benoh-marks in India. Dehra Dūn, 1928.

Price Rs. 3.
1926-27. The International Longitude Project. Computations and Publication of data. Observatories. Tides. Gravity and Deviation of the Vertical. Triangulation. Levelling. Research and Technical Notes regarding Personal Equation Apparatus and the height of Mount Everest. Dehra Dūn, 1929. Price Rs. 3.
1927-28. Computations and Publication of data. Observatories. Tides. Gravity and Deviation of the Vertioal. Triangulation. Levelling. Dehra Dūn, 1929. Price Rs. 3. 1928-29. Computations and Publication of data. Observatories. Tides. Gravity and Deviation of the Vertical. Triangulation. Levelling. Research and Technical Notes. Dehra Dūn, 1930. Price Rs. 3. 1929-30. Computations and Publication of data. Observatories. Tides. Gravity. Triangulation. Levelling. Research and Technical Notes. Dehra Dūn, 1931. Price Rs. 3.
Supplement. Indian Deflection and Gravity stations. Dehre Dūn, 1931.

Price Rs. 1-8.
1930-31. Computations and Publication of data. Observatories. Tides. Deviation of the Vertical. Gravity. Triangulation and Base Measurement. Levelling. The Magnetio Survey. Dehra Dūn, 1932. Price Rs. 3.

No. Name of Book
18. Geodetic Report Vol. VIII

Details

1931-32. Computations and Publication of data. Observatorios. Tides. Gravity. Triangulation. Levelling. Research and Technical Notes. Dehra Dūn, 1933.

Price Rs. 3.
19. Geodetic Report Triangulation and Base Measurement. 1933
20. Geodetic Report Triangulation and Base Measurement. 1934
21. Geodetic Report Triangulation. Levelling. Deviation of 1935 the Vertical. Gravity. Geophysical Survey in Bihār. Computing Office and Tidal Section. Observatories. Research and Technical Notes. Dehre Dūn, 1936. Price Rs. 3.
22. Geodetic Report Triangulation. Levelling. Deriation of 1936
23. Geodetic Report 1937
24. Supplement to
25. Geodetic Report 1938
26. Geodetic Report
26. Geodetic Report the Vertical. Gravity. Computing Office and Tidal Section. Observatories. Subsoil Water Levels. Levelling in Bengal and Bihār. Dehra Dūn, 1937.

Price Rs. 3.
Geodetic Report 1937 ang. Tation. and Tidal Section. Observatories. Re- search and Teohnical Notes. Dehra Dūn, 1940.

Price Rs. 3.
27. Geodetic Report Levelling. Deviation of the Vertical 1940

Gravity. Computing Office and Observatories. Dehre Dūn, 1945. Price Rs. 2.

No. Name of Book

Details

28. Technical Report, Triangulation in the Neighbouring Coun-

Part III, Geodetic tries of India. Levelling. Gravity. DeviaWork 1947 tion of the Vertical. Computations and Publications. Tides. Observatories. Dehra Dūn, $1948 . \quad$ Price Rs. 4.
29. Technical Report, Triangulation. Levelling. Gravity. DeviaPart III, Geodetic tion of the Vertical. Tides. Observatories. Work 1948-49. Computations and Publications. Research and Technical Notes. Dehra Dūn, 1950.

Price Rs. 4.
30. Technical Report, Triangulation. Levelling. Gravity. DeviaPart III, Geodetic Work 1949-50 tion of the Vertical Tides. Observatories. Computations and Publications. Dehra Dūn, $1951 . \quad$ Price Rs. 4.
31. Professional Pendulums. The Pendulum Operations in Paper No. 10 India, 1903-07, by Maj. G. P. LenozConyngham, r.e. Dehra Dūn, 1908.

Price Rs. 2-8.
32. Professional Pendulums. The Pendulum Operations in Paper No. 15 India and Burma, 1908-13, by Capt. H. J. Couchman, r.e. Dehra Dūn, 1915.

Price Rs. 2-8.
33. Professional Paper No. 16
34. Professional Peper No. 22
35. Professional

Paper No. 27
36. Professional

Paper No. 28
Geodesy. The Earth's Axes and Triangulation, by J. de Graaff Hunter, m.A. Dehra Dūn, 1918.

Price Rs. 4.
Levelling. Three Sources of error in Precise Levolling, by Capt. G. Bomford, r.e. Dehra Dūn, 1929.

Price Rs. 1-8.
Gravity. Gravity Anomalies and the Structure of the Earth's Crust, by Maj. E. A. Glennie, d.s.o., r.E. Dehra Dūn, 1932.

Price Rs. 1-8.
Triangulation. The Readjustment of the Indian Triangulation, by Maj. G. Bomford, r.e. Dehre Dūn, 1938. Price Rs. 4-8.
37. Professional
3. \quad Paper No. 29
38. Professional

Paper No. 30
Magnetic. Magnotic Anomalies, by B. L. Gulatee, m.a. (Cantab.). Dehra Dūn, 1938.

Price Rs. 1-8.
Gravity. Gravity Anomalies and the Figure of the Earth, by B. L. Gulatee, M.A. (Cantab.). Dehra Dūn, 1940. Price Rs. 3.
39. Wer Research Series Pamphlet No. 9

The Trans-Persia Triangulation 1941-44: (linking Iräq and India), by J. de Graaff Hunter, O.I.F., sc.D., F.R.S. and B, L,

Details

Gulatee, m.A. (Cantab.), with an Appendix "The Persia-India Connection", by Maj. P. A. Thomas, r.e. Price Rs. 2.
40. Memoirs of The Geophysical Prospecting for Manganese
Súrvey Research near Rāmtek, C.P., by B. L. Gulatee, m.A. Institute Vol. 1, (Cantab.). Price Rs. 3. No. 1
41. Teohnical Paper Value of Gravity at Dehra Dūn, by Mr. No. 2 B.L. Gulatee, m.a. (Cantab.). Dehra Dūn, 1948.
42. Technical Paper Levelling in India, Past and Future, by,

No. 3 Mr. B. L. Gulatee, M.s. (Cantab.). Dehra Dūn, 1949.
43. Technical Paper Mount Everest, its Name and Height, by Mr.

No. 4 B.L.Gulatee, M.A. (Cantab.). Dehra Dūn, 1950.
44. Technical Peper Geodetic and Geophysical aspects of the No. 5 earthquakes in Assam, by Mr. B. L. Gulatee, m.a. (Cantab.), f.r.i.c.s., M.i.s. (ind.). Dehra Dūn, 1951.
45. Question Papers set at the Intermediate Examination of the Institution of Surveyors (India) in 1950. Dehra Dūn, 1950.

Price As. -/8-
(B) Articles on Geodetic Subjects.

1. The Indian Geoid and Gravity Anomalies, by J. de Graaff Hunter, m.A., sc.d., f. nNst. p. and Capt. G. Bomford, r.e. (Bulletin Géodésique, No. 29, Jen.-March 1031, pages 20, 21, Paris).
2. Construction of the Geoid, by J. de Grasff Huntor, m.a., sc.d., F. INst. P. and Capt. G. Bomford, r.e. (Bulletin Géodésique, No. 29, Jan.-March 1931, pages 22-26, Paris).
3. *The Hypothesis of Isostasy, by J. de Grabff Hunter, m.A., so.d., F. inst. P. (The Observatory, Dec. 1931 and Geophysioal Supplement to Monthly Notices of the Royal Astronomical Society, January 1032).
[^1]| No. | Name of Book | Details |
| :---: | :---: | :---: |
| 4. | | *Stokes's Formula in Geodesy, by B. L. Gulatee, m.a. (Cantab.). (Nature, 20th Feb., 1932). |
| 5. | | †"Crustal Warpings " discussing the gravity work of the Survey of India. by Maj. E. A. Glennie, d.s.o., r.e. (The Observatory January and April 1933). |
| 6. | -• | \ddagger Figure of the Earth, by B. L. Gulatee, m.a. (Cantab.), (Gerlands Beiträge, Bd. 38, H. 3/4, S.426, 1933). |
| 7. | - | §Deflection of the Plumb-Line, by B. L. Gulatee, M.A. (Cantab.), (Hydrographic Roview, Vol. X, No. 2, Nov. 1933, pages 182-189). |
| 8. | -• | \ddagger Isostasy in India, by Lt.-Colonel E. A. Glennie, D.s.o., R.E. (Gerlands Beiträge Zur Geophysik, Vol. 43, No. 4, 1935). |
| 9. | -• | \||The Figure of the Earth from Gravity Observations and the Precision Obtainable, by J. de Greaff Hunter, c.I.E., sc.d. (Philosophical Transactions, Royal Society, Series A, Vol. 234, 1935). |
| 10. | - | ** On the Subterranean Mass-Anomalies in India, by B. L. Gulatee, m.A. (Cantab.), (Proceedings of the Academy of Sciences, U. P. India, Vol. 6, Sept. 1935). |
| 11. | \cdots | $\dagger \dagger$ Crustal Warping in the United States, by Lt.-Col. E. A. Glennie, d.s.o., R.e. (Gerlands Beiträge Zur Geophysik, Vol. 46, pp. 193-197, 1936). |
| 12. | \cdots | $\dagger \dagger$ The Boundary Problems of Potential Theory \& Geodesy, by B. L. Gulatee, m.a. (Cantab.), (Gerlands Beiträge Zur Geophysik, Vol. 46, pp. 91-98, 1936). |
| 13. | - | Geophysical Prospecting for Manganese, by B. L. Gulatee, m.A. (Cantab.), (Journal |

[^2]No. Name of Book

Details

18. Goodetic Report
Vol. VIII
19. Gicodetic Roport 193:3
20. Geodetic Report 1934
21. Geodetic Report 1935 .
22. Geodetic Report 1936
23. Geodetic Report 1937
24. Supplement to Geodetic Report 1937
25. Geodetic Report 1938
26. Geodetic Report 1939
27. Geodetic Report 1940

Triangulation and Base Measurement. Levelling. Gravity. Deviation of the Vertical. Computing Office and Tidal Section. The International Longitude Project. Observatories. Research and Technical Notes. Dehra Dūn, 1935. Price Rs. 3. Triangulation. Levelling. Deviation of the Vertical. Gravity. Geophysical Survey in Bihār. Computing Office and Tidal Section. Observatories. Research and Technical Notes. Dehra Dün, 1936. Price Rs. 3.
Deviation of
22. Geodetic Report Triangulation. Levelling. Deviation of

1931-32. Computations and Publication of clata. Observatories. Tides. Gravity. Triangulation. Levelling. Research and Technical Notes. Dehra Dūn, 1933.

Price Rs. 3.
Triangulation and Base Measurement. Levelling. Deviation of the Vertical. Computations and Publication of data Obsorvatories. Tides. Research and Technical Notes. Dehir Dūn, 1934. Price Rs. 3 . the Vertical. Gravity. Computing Office and Tidal Section. Observatories. Subsoil Water Levels. Levelling in Bengal and Bihār. Dehra Dūn, 1937.

Price Rs. 3.
Triangulation. Levelling. Gravity. Magnetic Survey in Bihär. Computing Office and Tidal Section. Observatories. Dehra Dūn, 1938.

Price Rs. 3.
Isostatic reductions of Indian Gravity Stations. Dehra Dūn, 1939.

Price Rs. 2-8.
Triangulation and Levelling. Deviation of the Vertical. Gravity. Computing Office and Tidal Section. Observatories. Dehra Dūn, $1939 . \quad$ Price Rs. 3. Levelling, Gravity. Computing Office and Tidal Section. Observatories. Researoh and Teohnical Notes. Dehra Dūn, 1940.

Price Rs. 3.
Levelling. Deviation of the Vertical. Gravity. Computing Office and Observatories. Dehra Dūn, 1945. Price Rs. 2.

No. Name of Book:

Details

28. Technical Report, Triangulation in the Neighbouring CounPart III, Geodetic tries of India. Levelling. (iravity. DeviaWork $19+7$ tion of the Vertical. Computations and Publications. Tides. Observatories, Dehra Dūn, 1948 . Price Rs. 1.
29. Professional Paper No. 10
30. Prefessional

Paper No. 15
31. Professional Paper No. 16
32. Professional

Paper No. 22
33. Professional

Paper No. 27
34. Professional

Paper No. 28
35. Professional
38. Memoirs of The Survey Reszarch Institute Vol. 1, No. 1

Prper No. 29
36. \quad Professional
36. $\quad \begin{array}{r}\text { Professional } \\ \text { Paper No. } 30\end{array}$
37. War Research

Series Pamphlet No. 9

Pendulums. The Pendulum Operations in India, 1903-07, by Maj. G. P. Lenox. Conyngham, r.e. Dehra Dūn, 1908.

Price Rs. 2-8.
Pendulums. The Pendulum Operations in India and Burma, 1908-13, by Capt. H. J. Couchman, r.e. Dehra Dūn, 1915.

Price Rs. 2-8.
Geodesy. The Earth's Axes and Triangulation, by J. de Graaff Hunter, m.a. Dehra Dūn, 1918.

Price Rs. 1.
Levelling. Three Sources of error in Precise Levelling, by Capt. G. Bomford, R.e. Dehra Dūr, 1929.

Price Rs. 1-8.
Gravity. Gravity Anomalies and tha Structure of the Earth's Crust, by Maj. E. A. Glennie, D.s.o., k.e. Dehra Dūn, 1932. Price Rs. 1-8.

Triangulation. The Readjustment of the Indian Triangulation, by Maj. G. Bomford, R.E. Dehra Dūn, $1938 . \quad$ Price Rs. $4-8$.

Magnetic. Magnetic Anomalies, by B. L. Gulatee, m.A. (Cantab.). Dehra Dün, 1938.

Price Rs. 1-8.

Gravity. Gravity Anomalies and tho Figure of the Earth, by B. L. Gulateo, M.A. (Cantab.). Delira Dūn, 1940.

Price Rs, 3.
The Trans-Persia Triangulation 1941-44 (linking Irēq and India), by J. de Grnalf Hunter, c.i.e., sc.d., F.r.s. and B. L. Gulatee, m.a. (Cantab.), with an Appendix "The Persia-India Connection", by Maj. P. A. Thomas, i.e.

Price Rs. 2.
Geophysical Prospecting for Mangane:e near Rämtek, C. P., by B. L. Gulatee, m.A: (Cantab.).

Price Rs. 3.

(B) Articles on Geodetic Subjects.

No.	Name of Book	Details	
1.		The Indian Geoid and Cravity Anomalies, by J. de Graaff Hunter, m.a., scid., F. Inst. P. and Capt. G. Bomford, r.E. (Bulletin (déodésíjue, No. 29, Jan.-March 1931, pages 20, 21, Paris).	
2.		Construction of the Geoid, by J. de Graaff Hunter, m.a., sc.d., F. inst. p. and Capt. G. Bomford, R.e. (Bulletin Géodésique, No. 20, Jan.-March 1931, pages 22-26, Paris).	
3.		*\\|'The Hypothesis of Isostasy, by J. do Gramff Hunter, m.a., sc.d., f. instr. f. ('The Observatory, Dec. 1931 and Geophysical Supplement to Monthly Notices of the Royal Astronomical Society, January 1932).	
4.		\dagger Stokes's Formula in Geodesy, by B. I. Gulatee, m.a. (Cuntab.). (Nature, 20th Feb., 1932)	
5.	\cdots	*"Crustal Warpings "discussing the gravity work of the Survey of India, by Maj. E. A. Glennie, d.s.o., r.e. (The Observatory January and April 1933).	
6.		\ddagger Figure of the Earth, by B. L. Gulatee, m.a. (Cantab.), (Gerlands Beiträge, Bd. 38, H. 3/4, S.426, 1933).	
7.	\cdots	§Deflection of the Plumb-Line, by B. L. Gulatee, m.A. (Cantab.), (Hydrographic Review, Vol. X, No. 2, Nov. 1933, pages 182-189).	
8.		\ddagger Isostesy in India, by Lt.-Colonel E. A. Glennie, d.s.o., r.e. (Gerlands Beiträge Zur Geophysik, Vol. 43, No. 4, 1935).	
9.		\#The Figure of the Earth from Gravity Observations and the Precision Obtainable, by J. de Graaff Hunter, c.I.E., so.d.	

[^3] India, by B. L. Gulatee, M.A. (Cintab.), (Proceedings of the Acadomy of Sciencos, U. P. India, Vol. 5, Sept. 1935).
11. †Crustal Warping in the United States, by Lt.-Col. E. A. Glennie, d.s.o., r.e. (Gerlands Beitriige Zur Geophysik, Vol. 40, pp, 193-197, 1936).
12. †'The Boundary Problems of P'otential Thoory \& Geodesy, by B. I. Gulatee, m.a. (Cuntab.), (Gerlands Beiträge Zur Geo$\mathrm{p}^{\text {hyysik, Vol. 46, pp. 91-98, 1936). }}$
13. Geophysical Prospecting for Manganeso. by B. L. Gulatee, m.A. (Cantab.), (Journal of Scientific and Industrial Research, Vol. III, No. 12, June 1945, pp. 543-554).
14. Standards of Length, by B. I. Gulateo, m. a. (Cantab.), (Journal of Scientific and Thdustrial Researel, Vol. IV, No. 8, Fel. 1946, pp. 453-59).
15. Standards of Measurement, by B. L. Guletee, m.a. (Cantab.), (Journal of Scientific and Industrial Research, Vol. V, No. 3, Sept. 1946, pp. 104-05).
16. Angular Corrections for the Lambert Orthomorphic Conical Projection, by B. L. Gulatee, m.a. (Cantab.), (Empire Survey Review, Vol. VIII, No. 62, Oct. 1946, pp. 311-14).
17. Secular Variation of Magnetic Declination in India, by B. L. Gulatee, m. A. (Cantab.), (Science and Culture, Vol. XII, No. 6, Nov. 1946, pp. 215-17).
18. Future of Geophysics in India, by B. L. Gulatee, m.a. (Cantab.), (Journal of Scientific and Industrial Research, Vol. VI, No. 2, Feb. 1947, pp. 53-59 \& 71).
19. The Hunter Shutter Eye-Piece for Longitude and Azimuth, by J. de Graaff Hunter, c.I.E., sc.D., f.r.s. (Empire Survey Review, Vol. IX, No. 63, Jan. 47, pp. 20-24).

[^4]
[^0]: * New merk.
 \dagger New ststion.

[^1]: - Obtainable from Meara. Taylor and Franoig, Red Lion Court, Fleet Streek London, W.C.
 \dagger Obtainable from the Royal Aatronomical Society, Burlington House, London, W. 1.

[^2]: - Obtainable from the office of Nature, St. Martin'a Streat, London, W.C. 2.
 \dagger Obtainable from the Messra. Taylor and Franois, Red Lion Court, Fleot Streat, London, W.C.
 \ddagger Obtainable from Akademisohe Verlagggeeellschaft M.B.H., Leipzig.
 § Obtainable from the International Hydrographio Burenu, Monte-Carlo, Monaos.
 || Obtalnable from Meagra. Dulau \& Co., 37 Soho Sqaure, London, W. or Messre.
 Harrisen \& Sons, St. Martin's Lane, London, or The Royal Society at Burlington Houre, London.
 -0 Obtainable from the Aoademy of Soiences, O.P., Allababad.
 \#才 Obtalnable from Akademische Verlagggesellsohart M.B.H., Leipzig.

[^3]: * Obtainable from Messra. Taylor and Francis, Red Lion Court, Fleet Street, London, W.C.
 \dagger Obtainable from the office of Nature, St. Martin's Street, Loudon, W.C. 2.
 \ddagger Obtainable from Akademische Verlagsgesellschaft M.B.H., Leipzig.
 § Obtainable from the International Hydrographic Rureau, Monte-Carlo, Monacs.
 || Obtainable from the Royal Astronomicul Society, Hurlington Honse, London,
 W. l.

 IT Obtainable from Messrs, Dulau \& Co., 37 Soho Sqaure, London, W. or Mesgrs. Harrizon \& Sons, St. Martin's Lane, London, or The Roynl Society at Burlington House, London.

[^4]: - Obtainable from the Academy of Sciences, U.P., Allahubat.
 \dagger Obtainable from Akademische Verlagagesellsohnft M.B.H. Leipzig.

